Limits
Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville, VIC 3010 Australia
aram@unimelb.edu.au
and
Department of Mathematics
University of Wisconsin, Madison
Madison, WI 53706 USA
ram@math.wisc.edu
Last updates: 27 October 2009
Limits
Write
limx→2fx=10
if
fx
gets closer and closer to
10
as
x
gets closer and closer to
2.
Example. Evaluate
limx→23x2+8x2-x.
When
x=1.5,
3x2+8x2-x=19.66⋯.
When
x=1.9,
3x2+8x2-x=11.011⋯.
When
x=1.99,
3x2+8x2-x=10.091⋯.
When
x=1.999,
3x2+8x2-x=10.00901⋯.
When
x=1.9999,
3x2+8x2-x=10.0009001⋯.
Usually determining the limit is straightforward.
Example.
limx→16x2-4x+3=5.
But sometimes …
Example.
limx→11+x-1x=?00.
Hoewver
00
MAKES NO SENSE.
Example.
limx→05xx=?00.
However here we have
limx→05xx=limx→05=5.
Example.
limx→017x2x=?00.
However here we have
limx→017x2x=limx→0172=172.
Example.
limx→11+x-1x=?00.
However here we have
limx→01+x-1x=limx→01+x-1x·1+x+11+x+1=limx→01+x-1x1+x+1=limx→0xx1+x+1=limx→011+x+1=11+0+1=12.
So whenever a limit looks like it is coming out to
00
it needs to be looked at in a different way to see what it is really getting closer and closer to.
Example. Evaluate
limx→7x2-49x-7.
Here we have
limx→7x2-49x-7=limx→7x-7x+7x-7=limx→7x+7=7+7=14.
Example. Evaluate
limx→5x5-3125x-5.
Here we have
limx→5x5-3125x-5=limx→5x5-55x-5=limx→5x-5x4+5x3+52x2+53x+54x-5=limx→5x4+5x3+52x2+53x+54=54+54+54+54+54=55=3125.
Example. Evaluate
limx→5x5/2-a5/2x-a.
Here we have
limx→5x5/2-a5/2x-a=limx→5x5/2-a5/2x-a·x5/2+a5/2x5/2+a5/2=limx→5x5-a5x-a·1x5/2+a5/2=limx→5x-ax4+ax3+a2x2+a3x+a4x-a·1x5/2+a5/2=limx→5x4+ax3+a2x2+a3x+a4x5/2+a5/2=a4+a4+a4+a4+a4a5/2+a5/2=5a42a5/2=52a3/2.
Particularly useful limits
Example. Evaluate
limx→0sinxx.
Here we have
limx→0sinxx=limx→0x-x33!+x55!-x77!+x99!-⋯x=limx→01-x23!+x45!-x67!+x89!-⋯=1-0+0-0+0-⋯=1
Example. Evaluate
limx→0cosx-1x.
Here we have
limx→0cosx-1x=limx→01-x22!+x44!-x66!+x88!-⋯-1x=limx→0-x22!+x44!-x66!+x88!-⋯x=limx→0-x2!+x34!-x56!+x78!-⋯=-0+0-0+0-⋯=0.
Example. Evaluate
limx→0ex-1x.
Here we have
limx→0ex-1x=limx→01+x+x22!+x33!+x44!+⋯-1x=limx→0x+x22!+x33!+x44!+⋯x=limx→01+x2!+x23!+x34!+⋯=1+0+0+0+⋯=1.
Example. Evaluate
limx→0ln1+xx.
Let
y=ln1+x.
Then
ey=1+x⇒x=ey-1,andy→0 as x→0.
So
limx→0ln1+xx=limy→0yey-1=limy→01ey-1y=11=1.
Example. Evaluate
limx→01+x1/x.
We have
limx→01+x1/x=limx→0eln1+x1/x=limx→0e1xln1+x=limx→0eln1+xx=e1=e.
Note.
n→∞
means as
n
gets larger and larger.
Example. Evaluate
limn→∞1+1nn.
Let
x=1n.
Then
x→0
as
n→∞.
So
limn→∞1+1nn=limx→01+x1/x=e..
Example. Evaluate
limx→πsinxx-π.
Let
y=x-π.
Then
y→0
as
x→π.
So
limx→πsinxx-π=limy→0siny+πy=limy→0sinycosπ+cosysinπy=limy→0siny-1+cosy0y=limy→0-sinyy=1
Example. Evaluate
limx→∞x2
7x+113x2+10.
We have
limx→∞x2-7x+113x2+10=limx→∞1-7x+11x23+10x2=1-0+03+0=13.
Example. Evaluate
limx→0sin3xsin5x.
We have
limx→0sin3xsin5x=limx→0sin3x3x·3x·5xsin5x·15x=limx→0sin3x3x·1sin5x5x·3x5x=1·11·35=35.
Example. Evaluate
limx→11-xarccosx2.
Let
y=arccosx.
Then
y→0
as
x→1
and
x=cosy.
So
limx→11-xarccosx2=limy→01-cosyy2=limy→01-cosyy2·1+cosy1+cosy=limy→01-cos2yy2·11+cosy=limy→0sinyy·sinyy·11+cosy=1·1·12=12.
Example. Evaluate
limΔx→0fx+Δx-fxΔx
when
fx=sin2x.
We have
limΔx→0fx+Δx-fxΔx=limΔx→0sin2x+Δx-sin2xΔx=limΔx→0sin2x+2Δx-sin2xΔx=limΔx→0sin2xcos2Δx+cos2xsin2Δx-sin2xΔx=limΔx→0sin2x·cos2Δx-1Δx+cos2x·sin2ΔxΔx=limΔx→0sin2x·cos2Δx-12Δx·2+cos2x·sin2Δx2Δx·2=sin2x·0·2+cos2x·1·2=2cos2x.
Example. Evaluate
limΔx→0fx+Δx-fxΔx
when
fx=cosx2.
We have
limΔx→0fx+Δx-fxΔx=limΔx→0cosx+Δx2-cosx2Δx=limΔx→0cosx2+2xΔx+Δx2-cosx2Δx=limΔx→0cosx2cos2xΔx+Δx2-sinx2sin2xΔx+Δx2-cosx2Δx=limΔx→0cosx2·cos2xΔx+Δx2-1Δx-sinx2·sin2xΔx+Δx2Δx=limΔx→0cosx2·cos2xΔx+Δx2-12xΔx+Δx2·2xΔx+Δx2Δx-sinx2·sin2xΔx+Δx22xΔx+Δx2·2xΔx+Δx2Δx=limΔx→0cosx2·cos2xΔx+Δx2-12xΔx+Δx2·2x+Δx-sinx2·sin2xΔx+Δx22xΔx+Δx2·2x+Δx=cosx2·0·2x-sinx2·1·2x=-2xsinx2,
(since
2xΔx+Δx2→0
as
Δx→0).
Example. Evaluate
limΔx→0fx+Δx-fxΔx
when
fx=xx.
We have
limΔx→0fx+Δx-fxΔx=limΔx→0x+Δxx+Δx+xxΔx=limΔx→0elnx+Δxx+Δx+elnxxΔx=limΔx→0ex+Δxlnx+Δx+exlnxΔx=limΔx→0exlnx·ex+Δxlnx+Δx-xlnx+1Δx=limΔx→0exlnx·ex+Δxlnx+Δx-xlnx+1x+Δxlnx+Δx-xlnx·x+Δxlnx+Δx-xlnxΔx=limΔx→0exlnx·ex+Δxlnx+Δx-xlnx+1x+Δxlnx+Δx-xlnxxlnx+Δx-xlnxΔx+lnx+Δ x=limΔx→0exlnx·ex+Δxlnx+Δx-xlnx+1x+Δxlnx+Δx-xlnxxlnx1+Δxx-xlnxΔx+lnx+Δ x=limΔx→0exlnx·ex+Δxlnx+Δx-xlnx+1x+Δxlnx+Δx-xlnxxlnx+ln1+Δxx-xlnxΔx+lnx+Δ x=limΔx→0exlnx·ex+Δxlnx+Δx-xlnx+1x+Δxlnx+Δx-xlnxxln1+ΔxxΔx+lnx+Δ x=limΔx→0exlnx·ex+Δxlnx+Δx-xlnx+1x+Δxlnx+Δx-xlnxln1+ΔxxΔxx+lnx+Δ x=exlnx·1·1+lnx=xx+xxlnx.
(since
x+Δxlnx+Δx-xlnx→0
and
Δx/x→0
as
Δx→0).
References [PLACEHOLDER]
[BG]
A. Braverman and
D. Gaitsgory,
Crystals via the affine Grassmanian,
Duke Math. J.
107 no. 3, (2001), 561-575;
arXiv:math/9909077v2,
MR1828302 (2002e:20083)