Limits

Limits

Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville, VIC 3010 Australia
aram@unimelb.edu.au
and

Department of Mathematics
University of Wisconsin, Madison
Madison, WI 53706 USA
ram@math.wisc.edu

Last updates: 27 October 2009

Limits

Write limx2fx=10 if fx gets closer and closer to 10 as x gets closer and closer to 2.

Example. Evaluate limx23x2+8x2-x.
When x=1.5, 3x2+8x2-x=19.66.
When x=1.9, 3x2+8x2-x=11.011.
When x=1.99, 3x2+8x2-x=10.091.
When x=1.999, 3x2+8x2-x=10.00901.
When x=1.9999, 3x2+8x2-x=10.0009001.

Usually determining the limit is straightforward.

Example. limx16x2-4x+3=5.

But sometimes …

Example. limx11+x-1x=?00.
Hoewver 00 MAKES NO SENSE.

Example. limx05xx=?00.
However here we have limx05xx=limx05=5.

Example. limx017x2x=?00.
However here we have limx017x2x=limx0172=172.

Example. limx11+x-1x=?00.
However here we have limx01+x-1x=limx01+x-1x·1+x+11+x+1=limx01+x-1x1+x+1=limx0xx1+x+1=limx011+x+1=11+0+1=12. So whenever a limit looks like it is coming out to 00 it needs to be looked at in a different way to see what it is really getting closer and closer to.

Example. Evaluate limx7x2-49x-7.
Here we have limx7x2-49x-7=limx7x-7x+7x-7=limx7x+7=7+7=14.

Example. Evaluate limx5x5-3125x-5.
Here we have limx5x5-3125x-5=limx5x5-55x-5=limx5x-5x4+5x3+52x2+53x+54x-5=limx5x4+5x3+52x2+53x+54=54+54+54+54+54=55=3125.

Example. Evaluate limx5x5/2-a5/2x-a.
Here we have limx5x5/2-a5/2x-a=limx5x5/2-a5/2x-a·x5/2+a5/2x5/2+a5/2=limx5x5-a5x-a·1x5/2+a5/2=limx5x-ax4+ax3+a2x2+a3x+a4x-a·1x5/2+a5/2=limx5x4+ax3+a2x2+a3x+a4x5/2+a5/2=a4+a4+a4+a4+a4a5/2+a5/2=5a42a5/2=52a3/2.

Particularly useful limits

Example. Evaluate limx0sinxx.
Here we have limx0sinxx=limx0x-x33!+x55!-x77!+x99!-x=limx01-x23!+x45!-x67!+x89!-=1-0+0-0+0-=1

Example. Evaluate limx0cosx-1x.
Here we have limx0cosx-1x=limx01-x22!+x44!-x66!+x88!--1x=limx0-x22!+x44!-x66!+x88!-x=limx0-x2!+x34!-x56!+x78!-=-0+0-0+0-=0.

Example. Evaluate limx0ex-1x.
Here we have limx0ex-1x=limx01+x+x22!+x33!+x44!+-1x=limx0x+x22!+x33!+x44!+x=limx01+x2!+x23!+x34!+=1+0+0+0+=1.

Example. Evaluate limx0ln1+xx.
Let y=ln1+x. Then ey=1+xx=ey-1,andy0 as x0. So limx0ln1+xx=limy0yey-1=limy01ey-1y=11=1.

Example. Evaluate limx01+x1/x.
We have limx01+x1/x=limx0eln1+x1/x=limx0e1xln1+x=limx0eln1+xx=e1=e.

Note. n means as n gets larger and larger.

Example. Evaluate limn1+1nn.
Let x=1n. Then x0 as n. So limn1+1nn=limx01+x1/x=e..

Example. Evaluate limxπsinxx-π.
Let y=x-π. Then y0 as xπ. So limxπsinxx-π=limy0siny+πy=limy0sinycosπ+cosysinπy=limy0siny-1+cosy0y=limy0-sinyy=1

Example. Evaluate limxx2 7x+113x2+10.
We have limxx2-7x+113x2+10=limx1-7x+11x23+10x2=1-0+03+0=13.

Example. Evaluate limx0sin3xsin5x.
We have limx0sin3xsin5x=limx0sin3x3x·3x·5xsin5x·15x=limx0sin3x3x·1sin5x5x·3x5x=1·11·35=35.

Example. Evaluate limx11-xarccosx2.
Let y=arccosx. Then y0 as x1 and x=cosy. So limx11-xarccosx2=limy01-cosyy2=limy01-cosyy2·1+cosy1+cosy=limy01-cos2yy2·11+cosy=limy0sinyy·sinyy·11+cosy=1·1·12=12.

Example. Evaluate limΔx0fx+Δx-fxΔx when fx=sin2x.
We have limΔx0fx+Δx-fxΔx=limΔx0sin2x+Δx-sin2xΔx=limΔx0sin2x+2Δx-sin2xΔx=limΔx0sin2xcos2Δx+cos2xsin2Δx-sin2xΔx=limΔx0sin2x·cos2Δx-1Δx+cos2x·sin2ΔxΔx=limΔx0sin2x·cos2Δx-12Δx·2+cos2x·sin2Δx2Δx·2=sin2x·0·2+cos2x·1·2=2cos2x.

Example. Evaluate limΔx0fx+Δx-fxΔx when fx=cosx2.
We have limΔx0fx+Δx-fxΔx=limΔx0cosx+Δx2-cosx2Δx=limΔx0cosx2+2xΔx+Δx2-cosx2Δx=limΔx0cosx2cos2xΔx+Δx2-sinx2sin2xΔx+Δx2-cosx2Δx=limΔx0cosx2·cos2xΔx+Δx2-1Δx-sinx2·sin2xΔx+Δx2Δx=limΔx0cosx2·cos2xΔx+Δx2-12xΔx+Δx2·2xΔx+Δx2Δx-sinx2·sin2xΔx+Δx22xΔx+Δx2·2xΔx+Δx2Δx=limΔx0cosx2·cos2xΔx+Δx2-12xΔx+Δx2·2x+Δx-sinx2·sin2xΔx+Δx22xΔx+Δx2·2x+Δx=cosx2·0·2x-sinx2·1·2x=-2xsinx2, (since 2xΔx+Δx20 as Δx0).

Example. Evaluate limΔx0fx+Δx-fxΔx when fx=xx.
We have limΔx0fx+Δx-fxΔx=limΔx0x+Δxx+Δx+xxΔx=limΔx0elnx+Δxx+Δx+elnxxΔx=limΔx0ex+Δxlnx+Δx+exlnxΔx=limΔx0exlnx·ex+Δxlnx+Δx-xlnx+1Δx=limΔx0exlnx·ex+Δxlnx+Δx-xlnx+1x+Δxlnx+Δx-xlnx·x+Δxlnx+Δx-xlnxΔx=limΔx0exlnx·ex+Δxlnx+Δx-xlnx+1x+Δxlnx+Δx-xlnxxlnx+Δx-xlnxΔx+lnx+Δ x=limΔx0exlnx·ex+Δxlnx+Δx-xlnx+1x+Δxlnx+Δx-xlnxxlnx1+Δxx-xlnxΔx+lnx+Δ x=limΔx0exlnx·ex+Δxlnx+Δx-xlnx+1x+Δxlnx+Δx-xlnxxlnx+ln1+Δxx-xlnxΔx+lnx+Δ x=limΔx0exlnx·ex+Δxlnx+Δx-xlnx+1x+Δxlnx+Δx-xlnxxln1+ΔxxΔx+lnx+Δ x=limΔx0exlnx·ex+Δxlnx+Δx-xlnx+1x+Δxlnx+Δx-xlnxln1+ΔxxΔxx+lnx+Δ x=exlnx·1·1+lnx=xx+xxlnx. (since x+Δxlnx+Δx-xlnx0 and Δx/x0 as Δx0).

References [PLACEHOLDER]

[BG] A. Braverman and D. Gaitsgory, Crystals via the affine Grassmanian, Duke Math. J. 107 no. 3, (2001), 561-575; arXiv:math/9909077v2, MR1828302 (2002e:20083)