Limits

Limits

Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville, VIC 3010 Australia
aram@unimelb.edu.au
and

Department of Mathematics
University of Wisconsin, Madison
Madison, WI 53706 USA
ram@math.wisc.edu

Last updates: 27 October 2009

Limits

Write lim x 2 f x = 10 if f x gets closer and closer to 10 as x gets closer and closer to 2 .

Example. Evaluate lim x 2 3 x 2 + 8 x 2 - x .
When x = 1.5 , 3 x 2 + 8 x 2 - x = 19.66 .
When x = 1.9 , 3 x 2 + 8 x 2 - x = 11.011 .
When x = 1.99 , 3 x 2 + 8 x 2 - x = 10.091 .
When x = 1.999 , 3 x 2 + 8 x 2 - x = 10.00901 .
When x = 1.9999 , 3 x 2 + 8 x 2 - x = 10.0009001 .

Usually determining the limit is straightforward.

Example. lim x 1 6 x 2 - 4 x + 3 = 5 .

But sometimes …

Example. lim x 1 1 + x - 1 x = ? 0 0 .
Hoewver 0 0 MAKES NO SENSE.

Example. lim x 0 5 x x = ? 0 0 .
However here we have lim x 0 5 x x = lim x 0 5 = 5 .

Example. lim x 0 17 x 2 x = ? 0 0 .
However here we have lim x 0 17 x 2 x = lim x 0 17 2 = 17 2 .

Example. lim x 1 1 + x - 1 x = ? 0 0 .
However here we have lim x 0 1 + x - 1 x = lim x 0 1 + x - 1 x · 1 + x + 1 1 + x + 1 = lim x 0 1 + x - 1 x 1 + x + 1 = lim x 0 x x 1 + x + 1 = lim x 0 1 1 + x + 1 = 1 1 + 0 + 1 = 1 2 . So whenever a limit looks like it is coming out to 0 0 it needs to be looked at in a different way to see what it is really getting closer and closer to.

Example. Evaluate lim x 7 x 2 - 49 x - 7 .
Here we have lim x 7 x 2 - 49 x - 7 = lim x 7 x - 7 x + 7 x - 7 = lim x 7 x + 7 = 7 + 7 = 14 .

Example. Evaluate lim x 5 x 5 - 3125 x - 5 .
Here we have lim x 5 x 5 - 3125 x - 5 = lim x 5 x 5 - 5 5 x - 5 = lim x 5 x - 5 x 4 + 5 x 3 + 5 2 x 2 + 5 3 x + 5 4 x - 5 = lim x 5 x 4 + 5 x 3 + 5 2 x 2 + 5 3 x + 5 4 = 5 4 + 5 4 + 5 4 + 5 4 + 5 4 = 5 5 = 3125 .

Example. Evaluate lim x 5 x 5 / 2 - a 5 / 2 x - a .
Here we have lim x 5 x 5 / 2 - a 5 / 2 x - a = lim x 5 x 5 / 2 - a 5 / 2 x - a · x 5 / 2 + a 5 / 2 x 5 / 2 + a 5 / 2 = lim x 5 x 5 - a 5 x - a · 1 x 5 / 2 + a 5 / 2 = lim x 5 x - a x 4 + a x 3 + a 2 x 2 + a 3 x + a 4 x - a · 1 x 5 / 2 + a 5 / 2 = lim x 5 x 4 + a x 3 + a 2 x 2 + a 3 x + a 4 x 5 / 2 + a 5 / 2 = a 4 + a 4 + a 4 + a 4 + a 4 a 5 / 2 + a 5 / 2 = 5 a 4 2 a 5 / 2 = 5 2 a 3 / 2 .

Particularly useful limits

Example. Evaluate lim x 0 sin x x .
Here we have lim x 0 sin x x = lim x 0 x - x 3 3 ! + x 5 5 ! - x 7 7 ! + x 9 9 ! - x = lim x 0 1 - x 2 3 ! + x 4 5 ! - x 6 7 ! + x 8 9 ! - = 1 - 0 + 0 - 0 + 0 - = 1

Example. Evaluate lim x 0 cos x - 1 x .
Here we have lim x 0 cos x - 1 x = lim x 0 1 - x 2 2 ! + x 4 4 ! - x 6 6 ! + x 8 8 ! - - 1 x = lim x 0 - x 2 2 ! + x 4 4 ! - x 6 6 ! + x 8 8 ! - x = lim x 0 - x 2 ! + x 3 4 ! - x 5 6 ! + x 7 8 ! - = - 0 + 0 - 0 + 0 - = 0 .

Example. Evaluate lim x 0 e x - 1 x .
Here we have lim x 0 e x - 1 x = lim x 0 1 + x + x 2 2 ! + x 3 3 ! + x 4 4 ! + - 1 x = lim x 0 x + x 2 2 ! + x 3 3 ! + x 4 4 ! + x = lim x 0 1 + x 2 ! + x 2 3 ! + x 3 4 ! + = 1 + 0 + 0 + 0 + = 1 .

Example. Evaluate lim x 0 ln 1 + x x .
Let y = ln 1 + x . Then e y = 1 + x x = e y - 1 , and y 0  as  x 0 . So lim x 0 ln 1 + x x = lim y 0 y e y - 1 = lim y 0 1 e y - 1 y = 1 1 = 1 .

Example. Evaluate lim x 0 1 + x 1 / x .
We have lim x 0 1 + x 1 / x = lim x 0 e ln 1 + x 1 / x = lim x 0 e 1 x ln 1 + x = lim x 0 e ln 1 + x x = e 1 = e .

Note. n means as n gets larger and larger.

Example. Evaluate lim n 1 + 1 n n .
Let x = 1 n . Then x 0 as n . So lim n 1 + 1 n n = lim x 0 1 + x 1 / x = e . .

Example. Evaluate lim x π sin x x - π .
Let y = x - π . Then y 0 as x π . So lim x π sin x x - π = lim y 0 sin y + π y = lim y 0 sin y cos π + cos y sin π y = lim y 0 sin y -1 + cos y 0 y = lim y 0 - sin y y = 1

Example. Evaluate lim x x 2 - 7 x + 11 3 x 2 + 10 .
We have lim x x 2 - 7 x + 11 3 x 2 + 10 = lim x 1 - 7 x + 11 x 2 3 + 10 x 2 = 1 - 0 + 0 3 + 0 = 1 3 .

Example. Evaluate lim x 0 sin 3 x sin 5 x .
We have lim x 0 sin 3 x sin 5 x = lim x 0 sin 3 x 3 x · 3 x · 5 x sin 5 x · 1 5 x = lim x 0 sin 3 x 3 x · 1 sin 5 x 5 x · 3 x 5 x = 1 · 1 1 · 3 5 = 3 5 .

Example. Evaluate lim x 1 1 - x arccos x 2 .
Let y = arccos x . Then y 0 as x 1 and x = cos y . So lim x 1 1 - x arccos x 2 = lim y 0 1 - cos y y 2 = lim y 0 1 - cos y y 2 · 1 + cos y 1 + cos y = lim y 0 1 - cos 2 y y 2 · 1 1 + cos y = lim y 0 sin y y · sin y y · 1 1 + cos y = 1 · 1 · 1 2 = 1 2 .

Example. Evaluate lim Δ x 0 f x + Δ x - f x Δ x when f x = sin 2 x .
We have lim Δ x 0 f x + Δ x - f x Δ x = lim Δ x 0 sin 2 x + Δ x - sin 2 x Δ x = lim Δ x 0 sin 2 x + 2 Δ x - sin 2 x Δ x = lim Δ x 0 sin 2 x cos 2 Δ x + cos 2 x sin 2 Δ x - sin 2 x Δ x = lim Δ x 0 sin 2 x · cos 2 Δ x - 1 Δ x + cos 2 x · sin 2 Δ x Δ x = lim Δ x 0 sin 2 x · cos 2 Δ x - 1 2 Δ x · 2 + cos 2 x · sin 2 Δ x 2 Δ x · 2 = sin 2 x · 0 · 2 + cos 2 x · 1 · 2 = 2 cos 2 x .

Example. Evaluate lim Δ x 0 f x + Δ x - f x Δ x when f x = cos x 2 .
We have lim Δ x 0 f x + Δ x - f x Δ x = lim Δ x 0 cos x + Δ x 2 - cos x 2 Δ x = lim Δ x 0 cos x 2 + 2 x Δ x + Δ x 2 - cos x 2 Δ x = lim Δ x 0 cos x 2 cos 2 x Δ x + Δ x 2 - sin x 2 sin 2 x Δ x + Δ x 2 - cos x 2 Δ x = lim Δ x 0 cos x 2 · cos 2 x Δ x + Δ x 2 - 1 Δ x - sin x 2 · sin 2 x Δ x + Δ x 2 Δ x = lim Δ x 0 cos x 2 · cos 2 x Δ x + Δ x 2 - 1 2 x Δ x + Δ x 2 · 2 x Δ x + Δ x 2 Δ x - sin x 2 · sin 2 x Δ x + Δ x 2 2 x Δ x + Δ x 2 · 2 x Δ x + Δ x 2 Δ x = lim Δ x 0 cos x 2 · cos 2 x Δ x + Δ x 2 - 1 2 x Δ x + Δ x 2 · 2 x + Δ x - sin x 2 · sin 2 x Δ x + Δ x 2 2 x Δ x + Δ x 2 · 2 x + Δ x = cos x 2 · 0 · 2 x - sin x 2 · 1 · 2 x = - 2 x sin x 2 , (since 2 x Δ x + Δ x 2 0 as Δ x 0 ).

Example. Evaluate lim Δ x 0 f x + Δ x - f x Δ x when f x = x x .
We have lim Δ x 0 f x + Δ x - f x Δ x = lim Δ x 0 x + Δ x x + Δ x + x x Δ x = lim Δ x 0 e ln x + Δ x x + Δ x + e ln x x Δ x = lim Δ x 0 e x + Δ x ln x + Δ x + e x ln x Δ x = lim Δ x 0 e x ln x · e x + Δ x ln x + Δ x - x ln x + 1 Δ x = lim Δ x 0 e x ln x · e x + Δ x ln x + Δ x - x ln x + 1 x + Δ x ln x + Δ x - x ln x · x + Δ x ln x + Δ x - x ln x Δ x = lim Δ x 0 e x ln x · e x + Δ x ln x + Δ x - x ln x + 1 x + Δ x ln x + Δ x - x ln x x ln x + Δ x - x ln x Δ x + ln x + Δ x = lim Δ x 0 e x ln x · e x + Δ x ln x + Δ x - x ln x + 1 x + Δ x ln x + Δ x - x ln x x ln x 1 + Δ x x - x ln x Δ x + ln x + Δ x = lim Δ x 0 e x ln x · e x + Δ x ln x + Δ x - x ln x + 1 x + Δ x ln x + Δ x - x ln x x ln x + ln 1 + Δ x x - x ln x Δ x + ln x + Δ x = lim Δ x 0 e x ln x · e x + Δ x ln x + Δ x - x ln x + 1 x + Δ x ln x + Δ x - x ln x x ln 1 + Δ x x Δ x + ln x + Δ x = lim Δ x 0 e x ln x · e x + Δ x ln x + Δ x - x ln x + 1 x + Δ x ln x + Δ x - x ln x ln 1 + Δ x x Δ x x + ln x + Δ x = e x ln x · 1 · 1 + ln x = x x + x x ln x . (since x + Δ x ln x + Δ x - x ln x 0 and Δ x / x 0 as Δ x 0 ).

References [PLACEHOLDER]

[BG] A. Braverman and D. Gaitsgory, Crystals via the affine Grassmanian, Duke Math. J. 107 no. 3, (2001), 561-575; arXiv:math/9909077v2, MR1828302 (2002e:20083)