Problem Set - Limits with Trigonometric Functions

Problem Set - Limits with Trigonometric Functions

Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville, VIC 3010 Australia
aram@unimelb.edu.au
and

Department of Mathematics
University of Wisconsin, Madison
Madison, WI 53706 USA
ram@math.wisc.edu

Last updates: 7 December 2009

Limits with Trigonometric Functions

Evaluate limx0sin3x4x.
Evaluate limx0sinxcosx3x.
Evaluate limx0tanxx.
Evaluate limx01-cosxsin2x.
Evaluate limx0tanaxtanbx.
Evaluate limx0sinx/4x.
Evaluate limx0sinmxtannx.
Evaluate limθ01-cos6θθ.
Evaluate limx01-cos2x3tan2x.
Evaluate limx0cos2x1-sinx.
Evaluate limx0tan2x-x3x-sinx.
Evaluate limxasinx-sinax-a.
Evaluate limx0sin5x-sin3xsinx.
Evaluate limx0tan3x-2x3x-sin2x.
Evaluate limx0x2-tan2xtanx.
Evaluate limxπ/41-tanxx-π/4.
Evaluate limx0tanx/23x.
Evaluate limx01-cos2x+tan2xxsinx.
Show that if
limx0kxcscx=limx0xcsckx,
then
k=±1.
Evaluate limh0sina+h-sinah.
Evaluate limhcosπ/hh-2.

References [PLACEHOLDER]

[BG] A. Braverman and D. Gaitsgory, Crystals via the affine Grassmanian, Duke Math. J. 107 no. 3, (2001), 561-575; arXiv:math/9909077v2, MR1828302 (2002e:20083)