Problem Set - Limits with Trigonometric Functions

Problem Set - Limits with Trigonometric Functions

Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville, VIC 3010 Australia
aram@unimelb.edu.au
and

Department of Mathematics
University of Wisconsin, Madison
Madison, WI 53706 USA
ram@math.wisc.edu

Last updates: 7 December 2009

Limits with Trigonometric Functions

Evaluate lim x 0 sin 3 x 4 x .
Evaluate lim x 0 sin x cos x 3 x .
Evaluate lim x 0 tan x x .
Evaluate lim x 0 1 - cos x sin 2 x .
Evaluate lim x 0 tan a x tan b x .
Evaluate lim x 0 sin x / 4 x .
Evaluate lim x 0 sin m x tan n x .
Evaluate lim θ 0 1 - cos 6 θ θ .
Evaluate lim x 0 1 - cos 2 x 3 tan 2 x .
Evaluate lim x 0 cos 2 x 1 - sin x .
Evaluate lim x 0 tan 2 x - x 3 x - sin x .
Evaluate lim x a sin x - sin a x - a .
Evaluate lim x 0 sin 5 x - sin 3 x sin x .
Evaluate lim x 0 tan 3 x - 2 x 3 x - sin 2 x .
Evaluate lim x 0 x 2 - tan 2 x tan x .
Evaluate lim x π / 4 1 - tan x x - π / 4 .
Evaluate lim x 0 tan x / 2 3 x .
Evaluate lim x 0 1 - cos 2 x + tan 2 x x sin x .
Show that if
lim x 0 k x csc x = lim x 0 x csc k x ,
then
k = ± 1 .
Evaluate lim h 0 sin a + h - sin a h .
Evaluate lim h cos π / h h - 2 .

References [PLACEHOLDER]

[BG] A. Braverman and D. Gaitsgory, Crystals via the affine Grassmanian, Duke Math. J. 107 no. 3, (2001), 561-575; arXiv:math/9909077v2, MR1828302 (2002e:20083)