Problem Set - Absolute Value

Problem Set - Absolute Value

Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville, VIC 3010 Australia
aram@unimelb.edu.au

and

Department of Mathematics
University of Wisconsin, Madison
Madison, WI 53706 USA
ram@math.wisc.edu

Last updates: 7 December 2009

Absolute value

Let x . Define |x| .

Let x . Define |x| .

Let x . Show that |x| = |x+0i| .

Let x . Show that |-x| =|x| .

Let x,y . Show that |x+y| |x| + |y| .

Let x,y . Show that |x+y| |x| + |y| .

Let x,y,z . Show that |x+y+z| |x| + |y| + |z| .

Let x,y,z . Show that |x+y+z| |x| + |y| + |z| .

Let x,y . Show that |x+y| 2 + |x-y| 2 = 2( |x|2 + |y|2 ) .

Let x,y . Show that |x+y| 2 = |x|2 + |y|2 + 2Re(ab¯) .

Let x,y . Show that |x+y| | |x| - |y|| .

Let x,y . Show that |x-y| | |x| - |y|| .

Let x,y,z . Show that |x+y+z| | |x| - |y| - |z| | .

Give solutions to the following inequalities in terms of intervals:
(a)   |x| >3.
(b)   |1+2x| 4.
(c)   |x+2| 5.
(d)   |x-5| < |x+1| .
(e)   |x-2| <3 or |x+1| <1 .
(f)   |x-2| <3 and |x+1| <1 .

Let a,b and let 0<ε <|b| . Show that | a+ε b+ε | |a|+ε |b|+ε .
Prove that if a1, a2, , an then | k=1 n ak | k=1 n | ak | .

Prove that if a1, a2, , an then | k=1 n ak | |ap| - k=1 ,kp n | ak | .

References [PLACEHOLDER]

[BG] A. Braverman and D. Gaitsgory, Crystals via the affine Grassmanian, Duke Math. J. 107 no. 3, (2001), 561-575; arXiv:math/9909077v2, MR1828302 (2002e:20083)