Problem Set - Cardinality

Problem Set - Cardinality

Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville, VIC 3010 Australia
aram@unimelb.edu.au

and

Department of Mathematics
University of Wisconsin, Madison
Madison, WI 53706 USA
ram@math.wisc.edu

Last updates: 7 December 2009

Cardinality

Define the following and give an example for each:
(a)   cardinality,
(b)   finite,
(c)   infinite,
(d)   countable,
(e)   uncountable.

Show that Card( >0 ) = Card( 0 ) .

Show that Card( >0 ) = Card( ) .

Show that Card( >0 ) = Card( ) .

Show that Card( >0 ) Card( ) .

Show that Card( ) = Card( ) .

Let S be a set. Show that Card( S) = Card( S) .

Show that if Card( S) = Card( T) then Card( T) = Card( S) .

Show that if Card( S) = Card( T) and Card( T) = Card( U) then Card( S) = Card( U) .

Define Card( S) Card( T) if there exists an injective function f:ST . Show that if Card( S) Card( T) and Card( T) Card( S) then Card( S) = Card( T) .

References [PLACEHOLDER]

[BG] A. Braverman and D. Gaitsgory, Crystals via the affine Grassmanian, Duke Math. J. 107 no. 3, (2001), 561-575; arXiv:math/9909077v2, MR1828302 (2002e:20083)