Last updates: 7 December 2009
Show that if
then
. The improper integral on the left is an improper integral of the first kind
and the improper integral on the right is an improper integral of the second kind. | |
Show that
. | |
Show that
diverges. | |
Evaluate
. | |
Determine whether
converges or diverges. | |
Determine whether
converges or diverges. | |
Determine whether
converges or diverges. | |
Show that
converges if
and
. | |
Show that
diverges if
and
. | |
Evaluate
. | |
Evaluate
. | |
Evaluate
. | |
Evaluate
. | |
Evaluate
. | |
Evaluate
. | |
Evaluate
. | |
Evaluate
. | |
Determine whether
converges or diverges. | |
Determine whether
converges or diverges. | |
Determine whether
converges or diverges. | |
Determine whether
converges or diverges. | |
Determine whether
converges or diverges. | |
Determine whether
converges or diverges. | |
Determine whether
converges or diverges. | |
Determine whether
converges or diverges. | |
Determine whether
converges or diverges. | |
Determine whether
converges or diverges. | |
Determine whether
converges or diverges. | |
Classify the following improper integrals and evaluate them if they converge:
|
[BG] A. Braverman and D. Gaitsgory, Crystals via the affine Grassmanian, Duke Math. J. 107 no. 3, (2001), 561-575; arXiv:math/9909077v2, MR1828302 (2002e:20083)