Problem Set - Limits

Problem Set - Limits

Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville, VIC 3010 Australia
aram@unimelb.edu.au

and

Department of Mathematics
University of Wisconsin, Madison
Madison, WI 53706 USA
ram@math.wisc.edu

Last updates: 7 December 2009

Limits

Define the following and give an example for each:
(a)   continuous at p,
(b)   limxaf(x),
(c)   continuous,
(d)   uniformly continuous,
(d)   Lipschiz continuous,
(e)   derivative at p,

For each of the following, guess the limit and then prove the guess by using the definition of limit:
(a)   limx4(12x-3),
(b)   limx011+x,
(c)   limx411+x2,
(d)   limx1x2-1x-1,
(e)   limx9x+1x2+1,
(f)   limxsinxx,
(g)   limx22x2+3x-8x3-2x2+x-12,
(h)   limxlogx+2x3x-5,

Evaluate the following limits:
(a)   limx0xcos1x2,
(b)   limx0(5+x2-x-2-1),
(c)   limx01+x-1x,
(d)   limxx4+xx4+1,
(e)   limx7x-1x2,
(f)   limx0+x7+x+5,
(g)   limx1|x-1|+1x+|x+1|,
(h)   limx3x2+12x+1,

Evaluate the following limits:
(a)   limx01-cosxx+x2,
(b)   limxlogxx,
(c)   limx0+xlogx,
(d)   limx0+xlogx,
(e)   limx0sinxx,
(f)   limx0(1arcsinx-1sinx).

References [PLACEHOLDER]

[BG] A. Braverman and D. Gaitsgory, Crystals via the affine Grassmanian, Duke Math. J. 107 no. 3, (2001), 561-575; arXiv:math/9909077v2, MR1828302 (2002e:20083)