Problem Set - Series

Problem Set - Series

Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville, VIC 3010 Australia
aram@unimelb.edu.au

and

Department of Mathematics
University of Wisconsin, Madison
Madison, WI 53706 USA
ram@math.wisc.edu

Last updates: 7 December 2009

Series

Define the following and give an example for each:
(a)   series,
(b)   converges (for a series),
(c)   diverges (for a series),
(d)   limit (of a series),
(e)   absolutely convergent,
(f)   conditionally convergent,
(g)   geometric series,
(h)   harmonic series,

Determine if the series n=1 1n5 converges. Use the integral test.

Determine if the series n=1 1 n2+4 converges. Use the integral test.

Determine if the series n=1 1n1/2 converges. Use the integral test.

Determine if the series n=2 1 (n-1) 2 converges. Use the integral test.

Determine if the series n=1 1 n2+1 converges. Use the comparison test.

Determine if the series n=2 n n3-1 converges. Use the comparison test.

Determine if the series n=1 1 n+1 converges. Use the comparison test.

Determine if the series n=2 1 n-1 converges. Use the comparison test.

Determine if the series n=1 n n2+1 converges. Use the comparison test.

Determine if the series n=2 1 n-1 converges. Use the comparison test.

Determine if the series n=1 2 3n+1 converges. Use the comparison test.

Determine if the series n=1 3n+1 4n+1 converges. Use the comparison test.

Determine if the series n=1 n3 2n converges. Use the ratio test.

Determine if the series n=1 n! nn converges. Use the ratio test.

Determine if the series n=1 2n n+1 converges. Use the ratio test.

Determine if the series n=1 2n n! converges. Use the ratio test.

Determine if the series n=1 (-1)n n1/3 converges.

Determine if the series n=1 n n+1 converges.

Determine if the series n=1 1 n7 converges.

Determine if the series n=1 1 n2+n converges.

Determine if the series n=1 n3 4n converges.

Determine if the series n=1 sinn 1+n2 converges.

Determine if the series 21 - 22 + 23 - 24 + 25 - converges.

Determine if the series - 12 + 23 - 34 + 45 - 56 + converges.

Determine if the series n=1 (-1)n log(n+1) converges.

Determine if the series n=1 (-1)n n n2+1 converges.

Determine if the series n=0 (-2)n n! converges absolutely.

Determine if the series n=1 (-1)n n n2+1 converges absolutely.

Determine if the series n=1 cosn n2 converges absolutely.

Determine if the series n=1 (-1)n log(n+1) converges absolutely.

References [PLACEHOLDER]

[BG] A. Braverman and D. Gaitsgory, Crystals via the affine Grassmanian, Duke Math. J. 107 no. 3, (2001), 561-575; arXiv:math/9909077v2, MR1828302 (2002e:20083)