The 0 Hecke algebra

The 0 Hecke algebra

Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville, VIC 3010 Australia
aram@unimelb.edu.au
and

Department of Mathematics
University of Wisconsin, Madison
Madison, WI 53706 USA
ram@math.wisc.edu

Last updates: 10 June 2010

The 0 Hecke algebra

Let W be a Weyl group with simple reflections s1 ,, sn . The 0 -Hecke algebra is given by generators T1 ,, Tn and relations Ti2 =- Ti  and   Ti Tj Ti m ij   factors = Tj Ti Tj m ij   factors ,  for  ij, where m ij is the order of si sj in W. If ei =- Ti ,  and   fi =1- ei =1+ Ti , then ei2 = ei , fi2 = fi , ei ej ei m ij   factors = ej ei ej m ij   factors , fi fj fi m ij   factors = fj fi fj m ij   factors . The last identity is proved by noting that a term of the form 1.1 k  factors . ei .1.1 B  factors in the product fi fj = 1- ei 1- ej cancels with the term 11. ei .1. ei B  factors . The remaining terms are products of the form -1 m ij -k 11 k  factors ei ej ei m ij -k   factors   and   -1 m ij -k-1 11 k  factors ei ej ei m ij -k-1   factors .1. Thus fi fj = 1- ei - ej + ei ej + ej ei - ei ej ei - ej ei ej ++ ei ej m ij   factors = 1+ k=1 m ij -1 ei ej k  factors -1 k + ei ej m ij   factors = 1+ k=1 m ij -1 ei ej k  factors -1 k + ej ei m ij   factors = fj fi .

Irreducible representations

Let V be a simple H 0 module and let vV,v0. Then e w0 vis a submodule of  V. So V= e w0 v or e w0 v=0. If e w0 v=0, e si w0 v is a submodule of V,1in. So V= e si w0 v for some i, or all e si w0 v=0. Thus, by descending induction on l w we find V= ew v, for some wW. So V is one dimensional.

Let J 1n and define χJ :H 0 by χJ ei = 1, if iJ, 0, if iJ. This defines 2n irreducible one dimensional representations of H 0 . By the argument in the first paragraph, all irreducible representations of H 0 are one dimensional. The relation ei2 = ei forces χ ei =0 or χ ei =1 for al one dimensional representation χ:H 0 , so that χJ ,J 12n are a complete set of irreducible H 0 representations.

The radical of H 0

For each i,j,1i,jn,ij, and each J 12n , χJ ei ej - ei ej ei =0. So the element ei ej - ei ej ei acts by 0 on every irreducible H 0 -module. So ei ej - ei ej ei Rad H 0 . If H = H 0 ei ej - ei ej ei and ei is the image of ei in H then ei ej = ei ej ei = ei ej ei ej == ei ej ei m ij   factors = ej ei ej m ij   factors == ej ei , for ij. So H is a commutative algebra. In view of the relation ei 2 = ei the elements e i1 e ik ,1 i1 < ik n,span H and so dim H < 2n . Since all 2n irreducible representations χJ of H 0 are representations of H , dim H = 2n   and   H   is semisimple. So Rad H 0 = ei ej - ei ej ei | ij .

Projective indecomposable H 0 modules

For wW let ew = e i1 e ip and fw = f i1 f ip for a reduced decomposition w= s i1 s ip of w.

Let J 12n and define P J =H 0 e wj f w Jc , where wJ and w Jc are the longest elements of the parabolic subgroups WJ and W Jc , respectively. The P J has basis ew f w Jc | Dr w =J ,where   Dr w = i| w si <w . The Cartan invariants are c JK = mutliplicity of  L K   in a composition series of  P J = Card wW| Dr w =J, Dl w =K , where Dl w = i| si w<w . Since ew f w Jc = ew + v>w cv ev ,for some   cv , it follows that H 0 = J 12n P J ,as  H 0 -modules. Since P J has head isomorphic to L J P J span ew e wJ f w Jc | w>1 , the P J are the projective indecomposable modules (PIMs) of H 0 . The matrix C= c JK is the Cartan matrix for  H 0 .

Decomposition numbers

Let Lq λ be the irreducible H q modules in a form which can be specialised at q=0. Let L0 K denote the irreducible H 0 module indexed by K. The decomposition numbers are d λK = multiplicity of  L K   in a composition series of   Δ0 λ = Card w λ | Dl w =K , and c JK = λ d λJ d λK ,or, in matrix notation,  C= Dt D, where C= c JK   is the Cartan matrix, and D= d λK , is the decomposition matrix.

This can be checked directly when H is the dihedral Hecke algebra by noting that the irreducible representations of H given in (???_ specialise at q=0. They are given explicitly by ρ T1 = - 1+ ξk ξk - ξ -k - 1+ ξk 1+ ξk ξk - ξ -k 2 ξ -k 1+ ξk ξk - ξ -k , ρ T2 = - 1+ ξk ξk - ξ -k - 1+ ξ -k 1+ ξ -k ξk - ξ -k 2 ξ -k 1+ ξk ξk - ξ -k . Then, in this representation, - T2   projects onto   v2 = 1+ ξk ξk - ξ -k 1 , and T1 v2 =0. Similarly, - T2   projects onto   v2 = 1+ ξk ξk - ξ -k - ξ -k , and T2 v1 = 1-x i -2k 1+ ξk ξk - ξ -k 1+ ξk ξk - ξ -k 1 , which is a multiple of v2 (equal to 0 mod v2 ). From this one decudes the decomposition matrices as in (???).

Cell modules

Let Δ λ be the cell module of H q indexed by the cell λ and let Δ0 λ be its specialisation at q=0. The module Δ0 λ has basis Cw | w λ where   λ   is the left cell in  W  indexed by  λ. By [KL, 2.3 (a)-2.3(c)], T si Cw = - Cw if si w<w, q Cw + q 1 2 C si w + q 1 2 si z<z μ zw Cz , if si w>w, where μ zw is the coefficient of q 1 2 l w -l z -1 in the Kazhdan-Lusztig polynomial P z,w . The cell decomposition numbers κ λK = multiplicity of   L0 K   in a decomposition series of   Δ0 λ = Card w λ | Dl w =K . The decomposition of W into left and right cells W ~ left cellright cell w P w Q w gives the formula????? c JK = λ κ λJ κ λK , C= κt κ , where C = c JK ,  is the Cartan matrix, and κ= κ λK   is the cell decomposition matrix.

For dihedral groups, I2 m , the left cells are Γ = 1 , Γ 1 = s1 s2 s1 s1 s2 s1 s2 s1 s2 s1 s1 s2 s1 m  factors , Γ 2 = s2 s1 s2 s2 s1 s2 s1 s2 s1 s2 s2 s1 s2 m  factors , Γ 12 = w0 and at q=0 the cell representations have matrices Δ0 T1 = -1 , Δ0 T2 = -1 , Δ01 T1 = 0 -1 0 -1 , Δ01 T2 = -1 0 -1 0 , are m-1 × m-1 matrices with rows and columns indexed by C1 , C 21 , C121 ,, Δ02 T1 = -1 0 -1 0 , Δ02 T2 = 0 -1 0 -1 , are m-1 × m-1 matrices with rows and columns indexed by C2 , C 12 , C212 ,, and Δ0 12 T1 = 0 , Δ0 12 T2 = 0 . Hence Δ0 L , Δ0 1 m-1 2 L 1 m-1 2 L 2 , if m  is odd, m 2 L 1 m-2 2 L 2 , if m  is even, Δ0 1 m-1 2 L 1 m-1 2 L 2 , if m  is odd, m-2 2 L 1 m-1 2 L 2 , if m  is even, Δ0 12 L 12 . So the decomposition matrix for the cell representations is κ= 1 0 0 0 0 m-1 2 m-1 2 0 0 m-1 2 m-1 2 0 0 0 0 1 when  m  is odd, and κ= 1 0 0 0 0 m 2 m-3 2 0 0 m-3 2 m 2 0 0 0 0 1 when  m  is even. Thus κ=Cbb for dihedral Hecke algebras at q=0 (but the cell modules t q=0 are not the projective indecomposables - the cell modules at q=0 are semisimple.)

References [PLACEHOLDER]

[BG] A. Braverman and D. Gaitsgory, Crystals via the affine Grassmanian, Duke Math. J. 107 no. 3, (2001), 561-575; arXiv:math/9909077v2, MR1828302 (2002e:20083)

page history