
Topology Vol 14. pp. 173-117. Pergamon Press. 1975. Pnnted !n Great Bntatn 

ON A THEOREM OF PITTIE 

ROBERT STEINBERG 

(Received 1 October 1974) 

Il. INTRODUCTION 

HARSH V. PI’ITIE[~] has proved the following result: 
THEOREM 1.1. Let G be a connected compact Lie group with nIG free and G’ a (closed) 

connected subgroup of maximal rank. Then R(G’) is free (as a module) over R(G) (by 
restriction). 

Here R(G) denotes the complex representation ring of G. For the bearing of (1.1) on the 
K-theory of G the reader may consult [3]. Pittie’s proof actually omits a few cases, which can 
however be checked out by hand. Here we present an elementary proof which yields an explicit 
basis for R(G’) over R(G) (see (2.2) and (2.3(a)) below) and then a converse after suitably 
weakening the assumption on r,G. 

THEOREM 1.2. Let G be a connected compact Lie group and S its semisimple component. Then 
the following conditions are equivalent. 

(a) R(G’) is free over R(G) for every connected subgroup G’ of maximal rank. 
(b) R(T) is free over R(G) for some maximal torus T. 
(c) R(G) is the tensor product of a polynomial algebra and a Laurent algebra. 
(d) R(S) is a polynomial algebra. 
(e) S is a direct product of simple groups, each simply connected or of type S02,+,. 
Since r,G is free if and only if S is simply connected, because G is the product of S and a 

central torus, the equivalence of (a) and (e) provides the just-mentioned extension and converse 
of (1.1). 

As a result of our development we also obtain: 
THEOREM 1.3. Theorems 1.1 and 1.2 are true for linear algebraic groups over algebraically 

closed fields (instead of compact Lie groups) and their rational representations. 

52. PROOF OF (1.1) 

We may, and shall, assume that G is semisimple, hence simply connected since IT,G is free, 
as is indicated in [3]. Let T be a maximal torus of G’, hence also of G, and W’ and W the 
corresponding Weyl groups, and X the character group (1attice)‘of T. As is known (see [I]), R(G) 
may be identified with Z[X]” via restriction to T, even if G is not semisimple, and similarly for 
R (G’). To prove (1. l), therefore, we need only produce a free basis for Z[X] KJ’ over Z[Xl Y This 
puts us in the realm of weights, roots and reflection groups, for which we use 123 as a general 
reference. Let Z 5 X be the root system of G relative to T, x’ the set of positive roots and Il the 
corresponding basis of simple roots relative to some, fixed, ordering. The condition that G be 
simply connected is: 

2.1. The fundamental weights {A,}, defined by (A., b*) = &, (a, b E II) with b* = 2bl(b, b), 
form a basis for X. 

We generalize our problem slightly by allowing W’ to be any reflection subgroup of W. Let C’ 
be the corresponding root system, consisting of the roots orthogonal to the reflecting hyperplanes 
for W’, and w” the subset of W keeping x’+ positive. Finally, for v E w” let A, denote the 
product in X of those A, for which a E II and u-‘a ~0, and e, = xx-‘v-‘A, E Z[X], the sum 
over x E W’(v)\ W’ with W’(u) denoting the stabilizer of v-‘A, in W’. 

THEOREM 2.2. Assume G simply connected and theothernotations as above. Then Z[X] w’ is free 
over Z[X]” with {e,lv E W”} as a basis. 

Remarks 2.3. (a) Observe that each v-‘A, is dominant for Z’. For (v-lAy, a) = (A,, va) z 0 
since va > 0 for all a E 2”. It follows from (2.2) and the above discussion that (1.1) holds with a 
basis consisting of those irreducible representations of G’ for which the highest weights are 
{u-‘A, ( v E W’y. I t a so o 1 f 11 ows that the rank is ( WI/( W’(, in (1.1) or in (2.2), either by Galois 

173 



174 ROBERT STEINBERG 

theory or by (2.5(a)) below. (b) In the principal case in which W’ = {l}, in which G’ is a torus in 
(l.l), we get Z[X] free over Z[X]” with {w-‘h,lw E W} as a basis. 

MAIN LEMMA 2.4. Let {e”} be as above and K} (v E W”) any collection of elements of 
ZIXlw’. Set D = det ue,, E = det uf” (u, v E W”). 

(a) Df 0. 
(b) D divides E and the ratio is in Z[X]“. 
Granted this lemma, we may prove (2.2) as follows. If f E Z[X]*‘, then the system 

Ca,ue, = uf has a unique solution for a, E Z[X]“, hence the equation Za,e, = f does also, 
whence (2.2). 

It remains to prove (2.4). 
LEMMA 2.5. Let everything be as above. 
(a) W” is a system of representatives for WI W’. 
(b) If 2’ has a basis consisting of a subset of IT then e’(ux) = e(u) + l(x) for u E W”, 

x E w’. 
Here e(w) denotes the number of positive roots made negative by w. Fix w E W. Then 

w-l 2’ II Z’ and Vare two positive systems for 2’, hence (*) they are congruent under a unique 
x E W.Thenu=wx+ E W” and w = ux E W”. W’. Conversely, if w has this form, we may 
work backwards to conclude that x satisfies (*), hence is uniquely determined. This proves (a). 
The number of roots in I” made negative by ux as in (b) is I(x) since x fixes 2’ and u fixes the 
signs of the roots in 2’, while the number in S’ -H” is e(u) since x fixes this set, whence (b). 

LEMMA 2.6. Assume as before and that w E Wkeeps 8’ - 2” positive. Then w E w’, in fact 
w is in the subgroup generated by the simple reflections that w’ contains. 

Assume w as given, w # 1. Then wa <O for some simple root a, so that ((ww,) < e(w). By 
our assumption a E P”, so that w, preserves Z’ - 2” and hence ww, keeps it positive. By 
induction on e(w) we conclude that ww, is in the above subgroup, whence w is also. 

LEMMA 2.7. For v E W” we have VW(U) c W”W’(v). 
Recall that W(v), for example, denotes the stabilizer of v-‘A, in W. As is known, this is a 

reflection group. Let Z(v) be the corresponding system of roots, those orthogonal to c. We have 
v2’(u) = vZ’ fl uz(v). Hence v(Z’+- Z”(v)) is disjoint from (UP(V))‘, and it is positive since 
v E W”. Now if w E W(v), then VWV-~ E “W(v), the group corresponding to the root system 
vZ(v), which is the subset of Z orthogonal to A, and hence is like Z’ in (2.5(b)) since A, is dominant. 
By the above disjointness, vwu-’ . v(Z” -I”(v)) > 0. If we write VW = ux as in (2.5(b)), this yields 
x(Z” - Z’+(v)) > 0 since u fixes signs on 2’. Thus x E W’(v) by (2.6) with 8, H’ there replaced by 
Z’, P’(v) here, whence (2.7). 

LEMMA 2.8. For each root a let n. denote the number of pairs in Wlw’ interchanged by left 
multiplication by w,. 

(a) n, is constant on W-conjugacy classes of roots. 
(b) If a is simple then n, is the number of v’s in W” such that v-la CO. 
If a and b are conjugate, then so are w, and wb, hence also their left multiplications on 

W/W’, whence (a). In (b) let w, fix VW’. Then ZI-‘W~V E W’, whence v-la E Z’ and v-la >O 
since v E w”. Now assume w, does not fix VW’, i.e. v-la sf 2’. Then vY is disjoint from a 
and positive, whence w,vY is also positive and w,v E W”. Now just one of v-la, (w,v)-‘a is 
negative. Thus v-la CO for exactly n, choices of v E W”. 

LEMMA 2.9. If D is as in (2.4) and n. as in (2.8) then D has IIh,“a (a E l-I) as its unique highest 
term and rIIA,-“a as its unique lowest term. 

This is relative to the usual partial order in which A > p denotes that Ape1 is a product of 
positive roots. Let A denote the matrix (ue,). Recall that ue, = zux-‘U-IA,, summed over 
x E W’(v)\ W’. Consider the vth column of A. We have A, L UX-‘v-‘A, for all terms there. We 
claim that equality can hold on or above the diagonal only for the term with u = u and 
x E W’(v), if we order the rows so that u is above u’ whenever e(u) < e(u’). Assume equality. 
Then v-‘ux-’ E W(v) by definition, so that ux-* E W”W’(v) by (2.7), and x E W’(v) by 
(2.5(a)), so that uv-‘A, = A,. Thus uv-‘, hence also vu-‘, is in the group generated by the 
reflections for the simple roots orthogonal to A,, which are those kept positive by v-’ by the 
definitions. Applying (2.5(b)) to this situation we get e(u-‘) = Qv-‘) + [(vu-‘). On or above the 
diagonal where e(u) 5 e(v) this can hold only if Qvu-‘) = 0, whence u = v and our claim. It 
follows that D = det A has I’IA, as its unique highest term. Now A, (a E l-0 makes a contribution 
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to A, just when ~-‘a CO. Thus by (2.8(b)) the highest term is as in (2.9). Now each w E W 
permutes the rows of A by (2.5(a)) and the invariance of e, under W’, hence fixes D up to sign. It 
follows that there is a unique lowest term, ~wOIlhanE, with w. the element of W that makes all 
positive roots negative. Now if b = - woa then n, = nb by (2.8(a)). Thus the lowest term is as in 
(2.9), as required. 

Consider now (2.4). We show that D1 = II(u”‘- a -I’*) (a E X’) divides E and that D1 = D. 

Assume a E 2’. As noted earlier there are n, pairs of rows of (ufy) which are interchanged by 
w.. If we subtract row W,U from row u for such a pair then all entries of the result are divisible by 
a - 1 since w.h = Au “, n = -(A, a*), for A E X. Thus (a - l)“a divides E, and since Z[X] is a u.f.d., 
so do lI(a - 1)“~ and D,. In particular D, divides D. To prove D, = D we need only show that the 
highest and lowest terms match up, i.e. by (2.9), that %,a (a > 0) = %.A, (a E II), with the 
operation of X now written as addition. If s denotes the left side and b a simple root then wb 

maps b on -b and permutes the other positive roots. Thus (I- wb)s = hbb, and (s, b *) = hb by 
the formula for a reflection, so that s equals the right side by (2.1). Finally, each w E W acts on 
the rows of (ue,) and (uf.) just as it does on W/W’, hence fixes E/D. This proves (2.4), hence also 
(2.2) and (1.1). 

$3. PROOF OF (1.2) AND (1.3) 

In this section G is a simply connected group, T is a maximal torus, and the other notations of 
$2 are used. Further r, (a E II) denotes the irreducible representation of G with highest weight 
A,, so that R(G) is a polynomial algebra in the r., ‘s. If I is in the center of G, then r.,(z) = A,(z). 
id. Thus there is a natural action of z on R(G) and Z[X] with their scalars extended from Z to C 
such that zr. = A,(z)r, and zh, = A, (z)A, for all a. Observe that z fixes roots and commutes with 
W. We call .z a pseudoreflection if it is one on Z C r, or Z C A., i.e. if A,(z) = 1 for every a but 
one. 

MAIN LEMMA 3.1. Let G be simply connected and Z a subgroup of the center of G. Then the 
following conditions are equivalent. 

(a) R(G’)= is free ouer R(G)= for every connected subgroup G’ of maximal rank. 
(b) R(T)= is free over R(G)* for some maximal torus T. 

(c) R(G)’ is a polynomial algebra over Z. 
(d) Z is a direct product of the centers of a number of the simple components of G of type 

Spins,+,. 
(e) Z is generated by pseudoreflections. 
(f) R(G)= has a generating set of the form {ram* 1 a E II}. 
(g) X2 has a basis of the form {m.A,}. 
(h) (X”, W, Z,) is the data for a simply connected group for some choice of an abstract root 

system I& C X? 
Consider now (1.2) in which, as noted earlier, G may be assumed semisimple. Since every 

semisimple group may be written G/Z with G and Z as in (3.1), and since R(G)=, R(T)=, . . . have 
the same significance for G/Z as R(G), R(T), . . . have for G, Theorem 1.2 follows from the 
equivalence of (a), (b), (c) and (d) of (3.1). 

We first prove the equivalence of the last four parts of (3.1), which have been added mainly 
for convenience. If (e) holds and Z acts as a product of cyclic groups, the one on r. being of order 
m,, say, then R(G)= = Z[r,‘s]’ = Z[r, “a’s], whence (f). Conversely, if this equation holds then Z 
is a subgroup of the above product, is the whole product in fact since otherwise some nontrivial 
character IIAadO (0 5 d. < m,) would vanish on Z and IIrnda would contradict the last equation, 
whence (e). Since lIr,,do is in R(G)= if and only if Z d,,A. E Xz (additive notation here), (f) and 
(g) are equivalent. Observe that in (h) the elements of & are multiples of those of z since their 
directions are determined by the reflections of W. If (g) holds then m,a = (1 - w.)m,A, E Xz 
and (m.a, (mbb)*) is always integral since {(mbb)*} is a basis for the dual of Xz. It readily follows 
that {m,a ]a E II} is a basis for a root system 2, for which (h) holds. Conversely, if (h) holds and 
{m,a} is a basis for C,, then {m.A.} is the corresponding basis of Xz (see 2.1), whence (g). 

Next we prove that (e) 3 (a) j (b) j (c) j (e). If (e) holds, so does (h) and then also (a) by 
(1.1) which in (2.2) has been reduced to a theorem about (X, W, 2). Clearly (a) implies (b). Assume 
(b). Then A = CR(T)= is free, hence also integral, over B = CR(G)=. Localize B at the point q 
of Spec B where all r,‘s are 0 and A at a point p of Spec A above q. The first condition makes 
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sense since each r, has some power in B. We now invoke a result of 
Auslander-Buchsbaum-Serre. 

3.2 A (commutative, Noetherian) local ring R is regular if and only if its cohomological 
dimension d(R) is finite. 

Now let {x,, x2,. . . , x,} with r = (Ill, the rank of G, be a basis for X2, imbedded in A in the 
natural way, and xi(p) = cl. Then A, is the tensor product of r algebras, the ith equal to 
C[x,, xi-‘] localized at xi = G, hence is regular, whence (d(Ap) < 00 by (3.2). Since A,, is free over 
B, (with basis any basis for R(T)= over R(G)=), d(&) 5 d(A,), so that B, is regular by (3.2). 
Thus dimcm /m 2 = r, if m denotes the maximal ideal of B,. The monomials IIrada that lie in m 
form a multiplicative semigroup. Let C be its minima1 generating set, consisting of those 
elements that are not products of others. Clearly B is a basis for m /m2 over C so that IB I= r. 
However for each a E II some r,“‘- lies in B. Thus J3 consists of the r,m~‘s, and R(G)= is a 
polynomial algebra on the r,,mar s, whence (f) and also (c). Now assume (c). The free generating set 
for R(G)= may be taken in the ideal m just considered. Then the proof just given shows that (f) 
holds, hence also (e). 

It remains only to prove the equivalence of (d) and (e). For this we may assume that G is 
simple since if z E 2 is a pseudoreflection it acts nontrivially on just one r,, hence belongs to 
some simple component of G. Let V be the universal covering space for T, a real Euclidean 
space, and for convenience take the character values A(v) to be in R/Z rather than in the complex 
numbers of norm 1. Then there is the famous fundamental simplex S : {u E V 1 a(v) 2 0 (a E II), 
h(u) 5 I}. Here h = Z h,a is the highest root. This sum is to be taken over II and similarly for the 
sums on a, b, . . . that follow. The center of G is represented in S by 0 and the vertices z, of S 
corresponding to a’s for which h, = 1. For any such we have 

b(z,) = 8bbo (b E II). (3.3) 

For a again arbitrary write 

A, = 2 hb (nab E (9). (3.4) 

We claim that for the dual root system );*, in which a is replaced by 2a/(u, a) and similarly for A., 
the corresponding equation reads 

h ?: = 2 t&b*. (3.5) 

For substituting the definitions into (3.4) we get (3.5) with the coefficient of b* equal to 
nab(b, b)/(u, a). But (A,, A,) = n,,(c, c)/2 by (3.4) and (2.1), whence n,,(c, c) = &,(a, a) by 
symmetry. The coefficient of b * thus becomes n be, whence (3.5). Now assume that z. E Z acts 
as a pseudoreflection on CR(G) = C[r,‘s]. Then A,(z,) is integral with just one exception, say for 
c = b. But A,(z.) = n,, by (3.4). Thus (by (3.5)) nb.b*, hence also some submultiple of b*, is a 
weight. This implies that P* is of type C, and b * is the unique long simple root, as is well known 
and proved thus: in any other case there is a simple root c* such that (b*, c**) = - 1, so that b* 
is primitive as a weight. Then Z is of type B, (and G = Spin2,+, ), and a is the long root at the end 
of the Dynkin diagram and (1, z,} is the center of G since this a is the only simple root for which 
h, = 1. Conversely, if S and a are as just mentioned it can be verified that Ab in (3.5) has exactly 
one nonintegral coefficient so that z, is a pseudoreflection. Thus (d) and (e) are equivalent, and 
(3.1) is completely proved. 

Remarks 3.6. (a) For a proof of the equivalence of (b), (c) and (e) in a more general setting see 
[4], from which our proof that (b) implies (c) is taken. We could avoid the other heavy 
commutative algebra used there because of the simple action of Z in our case. (b) The geometric 
essence of the equivalence of (c) and (e) in its general form is that, in an algebraic or analytic 
variety acted on by a finite group Z of order not divisible by the characteristic a nonsingular point 
p remains nonsingular in the quotient space if and only if Z” acting on the tangent space at p is 
generated by pseudoreflections. 

Finally, we consider (1.3). Since every irreducible representation of G is trivial on the 
unipotent radical of G, we may assume G reductive. Then we may reduce (1.3) to properties .of 
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abstract root systems and reflection groups, as we reduce (1.1) to (2.2), properties which have 
been proved above. 
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Elliptic Functions sn, cn, dn, as Trigonometry
W. Schwalm, Physics, Univ. N. Dakota

Background: Jacobi discovered that rather than studying elliptic integrals
themselves, it is simpler to think of them as inverses for some functions like
trig functions. For instance, recall that

sin−1(x) =
∫ x

0

dx√
1 − x2

,

but that it is easier to study sin(x) than the inverse sine. The resulting
elliptic functions satisfy non-linear DEs that arise in many applications.

Here we develop the Jacobi elliptic functions as a form of trigonometric func-
tions, but using an ellipse rather than a circle. These notes evolved from a
lecture by William M. Kinnersley, circa 1975. The approach ought to be in
some classic text, but I have not found it.

�

�

�
θ

�

� �

�

Figure 1: ellipse featured in construction.

Trigonometry of the ellipse: The ellipse equation is

(
x

a

)2

+
(

y

b

)2

= 1,

but we normalize the ellipse by choosing b = 1 so that,(
x

a

)2

+ y2 = 1. (1)

1



Also of course,
x2 + y2 = r2. (2)

The eccentricity of an ellipse with general a, b is

b2

a2
= 1 − ε2, or ε =

√
1 − b2

a2
,

so that ε = 0 for a circle, ε = 1 for a parabola. Since b = 1, the eccentricity
is

ε ≡ k =

√
1 − 1

a2
,

which is the modulus of the corresponding elliptic functions. Thus 0 ≤ k ≤ 1,
and k = 1 should give ordinary trigonometry.

The next and very important thing to define is the argument u of the elliptic
functions. The u is the thing the elliptic functions are functions of. In the
case of trig functions, the argument would be the angle θ, but here u is a bit
more complicated.

u ≡
∫ Q

P
r dθ, (3)

where P and Q are as shown in Fig. 1. Notice that u is not an angle. It is
not arc length and it is not area either. However, u becomes the angle θ or
arc length in the limit a → 1, or k → 0 when the ellipse becomes a circle.

With the argument and modulus of the elliptic functions defined, the func-
tions themselves are just ratios, just as in the case of trigonometry.

sn(u, k) = y, (4)

cn(u, k) = x/a, (5)

dn(u, k) = r/a. (6)

The first two generalize the sine and cosine, and the third comes about
because the radius is not constant on an ellipse. When k → 0, so that a = 1,
these become just y, x, and +1, since r → 1 also. This connects the elliptic
functions to sin θ, cos θ and +1.

There are several notational points to mention here. First, one often omits
the modulus k in writing the elliptic functions and just writes

sn u = sn(u, k), and so on.
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Corresponding to a given modulus k there is a complementary modulus k′

such that
k′ =

√
1 − k2.

There are also other notations. For example, a modern invention is to use
m = k2 so that fewer square roots appear. Then one defines

sn(u|m) ≡ sn(u, k), where m = k2.

In fact there are twelve Jacobi elliptic functions, defined using a simple con-
vention

ns u = 1
sn u

nc u = 1
cnu

nd u = 1

dnu

sc u = snu
cn u

dc u = dn u
cn u

cs u = cn u
sn u

ds u = dnu
sn u

sd u = snu

dnu
cd u = cn u

dnu

and these all satisfy certain nonlinear differential equations, as we shall see.

From Eq.(1) we have
cn2 u + sn2 u = 1, (7)

which generalizes cos2 θ + sin2 θ = 1. An then from Eq.(2),

dn2 u + k2 sn2 u = 1. (8)

The differential relations now follow essentially from Eqs(1) and (2), just as
the differentials of the sine and cosine follow from the Pytagorean formula.
From

θ = tan−1
(

y

x

)
,

one has

d θ =
1

r2
(x dy − y dx).

But

du = r dθ =
1

r
(x dy − y dx).

Also, from Eq.(1),
x dx

a2
+ y dy = 0,
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so one can replace either

dy = − x

a2 y
dx,

or

dx = − a2 y

x
dy.

The corresponding substitutions for du are therefore

du =
1

r

(
− x2

a2 y
− y

)
dx,

or

du =
1

r

(
x +

a2 y2

x

)
dy.

With these substitutions we get the following formulas for differentiating
elliptic functions (with respect to the argument u, not k),

d

du
sn u = cn u dnu, (9)

d

du
cn u = − sn u dnu, (10)

d

du
dn u = − k2 sn u cnu. (11)

Equations (9) and (10) relate in obvious ways to the trigonometric limit,
while Eq.(11) is new. It reduces to an identity when k → 0.

The elliptic functions satisfy differential equations that we find by starting
with a solution and working backward. Apparently the modulus k should
enter the DE as a parameter.

d

du
sn u = cn u dnu =

√
1 − sn2 u

√
1 − k2 sn2 u,

so if y(u) = sn u, then

(
dy

du

)2

= (1 − y2)(1 − k2 y2). (12)

If I solve for u(y),

u = c +
∫

dy√
1 − y2

√
1 − k2 y2

,
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which I recognize as an elliptic integral of the first kind, F (y, k). Thus, as
I mentioned earlier, the elliptic functions are the inverse functions for the
elliptic integrals. On the other hand, If I differentiate Eq.(12) again with
respect to u I get

y′′ + (1 + k2) y − 2 k2 y3 = 0. (13)

This relates to a nonlinear duffing-type oscillator. In fact, all twelve of the
Jacobi elliptic functions satisfy nonlinear first order DEs like Eq.(12), and
also nonlinear second order DEs like Eq.(13). Moreover, you will find that
the squares of the elliptic functions satisfy equations of the form

(y′)2 + α y2 + β y3 = 0,

and of the form
y′′ + γ y + δ y2 = 0.

One can thus solve all such equations exactly, in closed form, in terms of
elliptic functions. Different functions cover different parameter ranges.

Elliptic functions open up a window of solvable nonlinear (polynomial)
DEs, all of which relate to physical problems and physical phenomena. I
do not know of other types of solutions of this quality for any nonlinear
dynamical problems.

Homework: Perform the same construction starting from a hyperbola,

x2

a2
− y2 = 1

rather than from the ellipse in Fig.(1). Thus define the “Jacobi hyperbolic
functions,” sn(u, k), = y, ch(u, k) = x/a and dh(u, k) = r/a and derive
their properties. You should find that,

ch2 u − sh2 u = 1

and
d

du
sh u = ch u dhu

and then compute all the other properties, including the first and second
order DEs these functions satisfy. (By the way, these functions are not dis-
cussed in the literature, since they are related to elliptic functions with com-
plex arguments, just as hyperbolic sines and cosines relate to sines and cosines
of complex argument. Using the DEs, can you show this relationship?)
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