Cauchy-Schwarz and triangle inequalities

Cauchy-Schwarz and triangle inequalities

Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville, VIC 3010 Australia
aram@unimelb.edu.au

Last updates: 03 January 2012

The space n

Define n={ (x1,x2 ,,xn) | x1,x2 ,,xn } so that 1=, 2= {(x,y) | x,y} , 3= {(x,y,z) | x,y,z} .

Creator: FreeHEP Graphics2D Driver Producer: geogebra.d.b Revision: 1.10 Source: Date: Monday, 7 December 2009 4:26:11 PM EST
Fig. Examples of points in 3

The absolute value on n is the function |x| : n 0 x |x| given by |x| = x12 ++ xn2 for x= ( x1,,xn ) .

For example:

Lagrange's identity

(Lagrange's identity) ( i=1n xi2 ) ( i=1n yi2 ) - ( i=1n xiyi ) 2 = 12 i,j=1 n ( xiyj -xjyi )2 .

Proof.
12 i,j=1n ( xiyj -xjyi )2 = 12 i=1 n ( xi2 yj2 -2xi yj xjyi + xj2 yi2 ) = 12 i,j=1 n xi2 yj2 + 12 i,j=1 n xj2 yi2 - i,j=1 n xiyj xjyi = i,j=1n xi2yj2 - ( i,j=1 n xiyj )2 = ( i=1n xi2 ) ( j=1n yj2 ) - ( i=1n xiyi )2.

For example, when n=2, OOPS THIS IS MESSED UP SOMEHOW 12 (( x1y1 -x1y1 )2 +( x1y2 -x2y1) 2 +( x2y1 -x1y2) 2 + (x2y2 - x2y2) 2) = (x1y2 -x2y1) 2 = x12 y22 - 2x1x2 y1y2 + x22 y12 = (x12 +x22) (y12 + y22) -( x1y1 +x2 y2)2 .

The inner product

The inner product on n is the function n×n (x,y) x,y given by x,y = (x1, xn) ( y1 yn ) = x1y1 ++ xnyn = i=1n xiyi .

Note: The length of xn is given by |x| = x12+ +xn2 = x,x .

(The Cauchy-Schwarz inequality) Let x,yn. Then x,y |x| |y| .

Proof.
Lagrange's identity tells us that |x|2 |y|2 - x,y 2 0. So ( |x| |y|) 2 x,y 2 . So |x| |y| x,y .

(The triangle inequality) Let x,y n. Then |x+y| |x|+|y| .

Proof.
We have |x+y| 2 = x+y, x+y = x,x + x,y + y,x + y,y = |x|2 + 2x,y + |y|2 |x|2 +2 |x| |y| + |y|2 = ( |x|+|y| )2 . So |x+y| |x|+|y| .

Notes and References

This proof of the Cauchy-Schwarz and triangle inequality is that found in [Bou, ???]. A similar proof is found, in the complex case in [Ahl, ???]. An even better proof is to use the discriminant of the restriction of a nondegenerate form to the 2-dimensional subspace spanned by x and y as in [Bou, ???].

References

[Bo] A. Borel, Linear Algebraic Groups, Section AG4.2, Graduate Texts in Mathematics 126, Springer-Verlag, Berlin, 1991, MR??????

[Go] R. Godement, Topologie algébrique et théorie des faisceaux, Section 1.9, Actualités scientifiques et industrielles 1252, Hermann, Paris, 1958. MR??????

page history