The calculus of BGG operators

Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville, VIC 3010 Australia
aram@unimelb.edu.au

Last update: 16 September 2012

The calculus of BGG operators

We work in the ring

R=𝕃 [ [ xλ λ𝔥* ] ] with xλ+μ=xλ+ xμ-p (xλ,xμ) xλxμ,

with p(xλ,xμ) 𝕃 [[xλ,xμ]] a power series

p(xλ,xμ)= -a11-a12 xμ-a21xλ -a31xλ2- a22xλxμ- a13xμxλ- ,

with aij𝕃 satisfying relations such that

x-λ+λ=x0= 0,xλ+μ, x(λ+μ)+ν= xλ+(μ+ν). (1)

Then

xα= -x-α 1-p(xα,x-α) x-α , 1 x-α +1xα=p (xα,x-α), (2)

and the formula

x-α x-α =-j=1-1 p(x-α,x-jα) x-jα=1+ j=1-1 ( 1-p (x-α,x-jα) x-jα ) , for>0, (3)

is proved by induction on . The formula

xsiλ -xλ x-αi = ( 1-p ( xλ, xλ,αiαi ) xλ ) ( 1+ j=1 λ,α-1 ( 1-p ( x-αi, x-jαi ) x-jαi ) ) , (4)

for λ,αi 0, generalizes one of the favourite formulas for the action of a Demazure operator REFERENCE FOR THIS!!!.

The nil affine Hecke algebra is the algebra over 𝕃 with generators xλ, yλ, tw, with λ,μ𝔥* and wW0, with relations

xλ+μ=xλ+xμ -p(xλ,xμ) xλxμ, yλ+μ=yλ+ yμ-p (yλ,yμ) yλyμ, xλyμ=yμxλ,

and

tvtw=twtv, twyλ=yλtw, twxλ=xwλ tw,forv,w W0,λ𝔥*.

Recall from (2.13) that the pushpull operators, or BGG–Demazure operators are given by

Ai= (1+tsi) 1x-αi, fori=1,2,,n. (5)

In general,

Ai = (1+tsi) 1x-αi= 1x-αi+ 1xαi tsi= 1x-αi- 1-p ( xαi, x-αi ) x-αi x-αi tsi = 1x-αi ( 1- ( 1-p ( xαi, x-αi ) x-αi ) tsi ) = 1x-αi (1-tsi)+p ( xαi, x-αi ) tsi. (6)

so that Ai is a divided difference operator plus an extra term. As in [BE1, Prop. 3.1],

Ai2 = (1+tsi) 1x-αi (1+tsi) 1x-αi = ( 1x-αi + 1xαitsi ) (1+tsi) 1x-αi = ( 1x-αi+ 1xαi ) (1+tsi) 1x-αi= ( 1x-αi +1xαi ) Ai,

so that

Ai2= ( 1x-αi+ 1xαi ) Ai=Ai ( 1x-αi +1xαi ) =Aip ( xαi, x-αi ) . (7)

Note also that

tsiAi = tsi (1+tsi) 1x-αi =Aiand (8) Aitsi = (1+tsi) 1x-αi tsi= (1+tsi) 1xαi= Ai x-αi xαi (9)

If fL [ [ xλ λ𝔥* ] ] then

fAi = f(1+tsi) 1x-αi= f1x-αi +ftsi 1x-αi and Ai(sif) = (1+tsi) sif x-αi = ( sif+f tsi ) 1x-αi,

so that

fAi=Ai (sif)+ ( f-sif x-αi ) ,forfR, (10)

The relation (10) is the same as a key relation in the definition of the classical nil-affine Hecke algebra. (KEEP THIS COMMENT IN???) The right hand side of (10) motivates the definition of operators

Bαf= f-sαf x-α , for rootsα. ThentwBα tw-1= Bwα, (11)

for wW0. The calculus of these divided difference operators will be useful for computations in RR[W0].

Next are useful, expansions of products of tsi in terms of products of Ai with xs on the left,

ts1 = xα1A1- xα1 x-α1 , ts2ts1 = xs2α1 xα2A2A1 -xs2α1 xα2 x-α2 A1- xs2α1 x-s2α1 xα2A2+ xs2α1 x-s2α1 xα2 x-α2 ts1 ts2 ts1 = xs1s2α1 xs1α2 xα1A1A2 A1- xs1s2α1 xs1α2 xα1 x-α1 A2A1- xs1s2α1 x-s1s2α1 xs1α2 xα1A1A2 + xs2s1α2 x-s2s1α2 xs2α1 xα2 x-α2 A1+ xs1s2α1 x-s1s2α1 xs1α2 xα1 x-α1 A2- xs1s2α1 x-s1s2α1 xs1α2 x-s1α2 xα1 x-α1 + ( xs1α2 x-s1α2 xs1s2α1 x-s1s2α1 xα1- xs1α2 x-s1α2 xs1s2α1- xs2s1α2 x-s2s1α2 xs2α1 xα2 x-α2 ) A1 ts1 ts2 ts1 ts2 = xs2s1s2α1 xs2s1α2 xs2α1 xα2A2A1 A2A1 -xs2s1s2α1 xs2s1α2 xs2α1 xα2 x-α2 A1A2A1- xs2s1s2α1 x-s2s1s2α1 xs2s1α2 xs2α1 xα2A2A1A2 + xs2s1s2α1 x-s2s1s2α1 xs2s1α2 xs2α1 xα2 x-α2 A1A2 + ( xs2s1s2α1 x-s2s1s2α1 xs2s1α2 x-s2s1α2 xs2α1 xα2- xs2s1s2α1 xs2s1α2 x-s2s1α2 xα2- xs2s1s2α1 xs2s1α2 xs2α1 x-s2α1 ) A2A1 - ( xs2s1s2α1 x-s2s1s2α1 xs2s1α2 x-s2s1α2 xs2α1- xs2s1s2α1 xs2s1α2 x-s2s1α2 ) xα2 x-α2 A1 + ( xs2s1s2α1 x-s2s1s2α1 xs2s1α2 xs2α1 x-s2α1 - xs2s1s2α1 x-s2s1s2α1 xs2s1α2 x-s2s1α2 xs2α1 x-s2α1 xα2 ) A2 + xs2s1s2α1 x-s2s1s2α1 xs2s1α2 x-s2s1α2 xs2α1 x-s2α1 xα2 x-α2 ,

and expansions of products of tsi in terms of products of Ai with xs on the right,

ts1 = A1x-α1-1, ts1ts2 = A1A2x-α2 x-s2α1- A1x-s2α1 -A2x-α2+1, ts1ts2ts1 = A1A2A1 x-α1 x-s1α2 x-s1s2α1 -A1A2 x-s1α2 x-s1s2α1 -A2A1 x-α1 x-s1α2 +A1 x-s2α1+ A2x-s1α2 -1+A1 ( x-α1- x-s2α1- x-α1 xα1 x-s1s2α1 ) , ts1ts2 ts1ts2 = A1A2A1A2 x-α2 x-s2α1 x-s2s1α2 x-s2s1s2α1 -A1A2A1 x-s2α1 x-s2s1α2 x-s2s1s2α1 -A2A1A2 x-α2 x-s2α1 x-s2s1α2 +A1A2 ( - x-α2 xα2 x-s2s1α2 x-s2s1s2α1 -x-α2 x-s2α1 xs2α1 x-s2s1s2α1 +x-α2 x-s2α1 ) +A2A1 x-s2α1 x-s2s1α2 -A1 ( x-s2α1- x-s2α1 xs2α1 x-s2s1s2α1 ) -A2 ( x-α2- x-α2 xα2 x-s2s1α2 ) +1.

Finally, there are expansions of products of Ai in terms of products of tsi:

A1 = (ts1+1) 1x-α1, A1A2 = (ts1+1) ( ts2 1 x-α2 x-s2α1 + 1 x-α1 x-α2 ) , A1A2A1 = (ts1+1) ( ts2ts1 1 x-α1 x-s1α2 x-s1s2α1 +ts2 1 x-α1 x-α2 x-s2α1 +1x-α1 ( 1 x-α1 x-α2 + 1 x-s1α1 x-s2α1 ) ) , A1A2A1A2 = (ts1+1) ( ts2ts1 ts2 1 x-α2 x-s2α1 x-s2s1α2 x-s2s1s2α1 + ts2ts1 1 x-α2 x-α1 x-s1α2 x-s1s2α1 +ts2 1 x-α2 x-s2α1 ( 1 x-α2 x-α1 + 1 x-s2α1 x-s2α2 + 1 x-s2s1α2 x-s2s1α1 ) + 1 x-α1 x-α2 ( 1 x-α2 x-α1 + 1 x-s2α1 x-s2α2 + 1 x-s1α2 x-s1α1 ) ) ,

These formulas arranged so that products beginning with ts2 and A2 are obtained from the above formulas by switching 1s and 2s. In particular, the "braid relations" for the operators Ai are the equations given by, for example, in the case that s1s2s1= s2s1s2 so that s1α2=s2α1 =α1+α2 then

0=ts1ts2 ts1-ts2 ts1ts2

is equivalent to

A2A1A2- ( 1 x-α2 x-α1 - 1 x-α1 x-α3 + 1 xα2 x-α3 ) A2 = A1A2A1- ( 1 x-α1 x-α2 - 1 x-α2 x-α3 + 1 xα1 x-α3 ) A1,

as indicated in [HLSZ, Proposition 5.7].

page history