Cartan Matrices and Dynkin Diagrams

Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville, VIC 3010 Australia
aram@unimelb.edu.au

Last updates: 27 July 2012

Cartan matrices and Dynkin diagrams

The Cartan matrix is C= αi , αi with αi = 2αi αi , αi So that the matrix of the form is A= αi , αj = DC where D=diag αi , αi 2 .

Type An-1: The Dynkin diagram is

1 2 n-1

and C= 2 -1 -1 2 -1 -1 2 -1 0 0 2 -1 -1 2 =A.

Type A5: The Dynkin diagram is

1 2 3 4 5

and

Q= 0 v-u 1 1 1 u-v 0 v-u 1 1 1 u-v 0 v-u 1 1 1 u-v 0 v-u 1 1 1 u-v 0

Type Bn: The Dynkin diagram is

1 2 3 n

and C= 2 -2 -1 2 -1 -1 2 -1 0 0 2 -1 -1 2 and A= 2 -2 -2 4 -2 -2 4 -2 0 0 4 -2 -2 4 , and D=diag1222 .

Type B5: The Dynkin diagram is

1 2 3 4 5

and

Q= 0 v-u2 1 1 1 u-v2 0 v-u 1 1 1 u-v 0 v-u 1 1 1 u-v 0 v-u 1 1 1 u-v 0

Type Cn: The Dynkin diagram is

1 2 3 n

and C= 2 -1 -2 2 -1 -1 2 -1 0 0 2 -1 -1 2 and A= 4 -2 -2 2 -1 -1 2 -1 0 0 2 -1 -1 2 , and D=diag2111 .

Type C5: The Dynkin diagram is

1 2 3 4 5

and

Q= 0 v2-u 1 1 1 u2-v 0 v-u 1 1 1 u-v 0 v-u 1 1 1 u-v 0 v-u 1 1 1 u-v 0

Type Dn: The Dynkin diagram is

1 2 3 4 n

and C= 2 0 -1 0 2 -1 -1 -1 2 -1 -1 2 -1 0 0 2 -1 -1 2 =A.

Type D5: The Dynkin diagram is

1 2 3 4 5

and

Q= 0 1 v-u 1 1 1 0 v-u 1 1 u-v u-v 0 v-u 1 1 1 u-v 0 v-u 1 1 1 u-v 0

Type E6: The Dynkin diagram is

1 2 3 4 5 6

and C= 2 0 -1 0 0 0 0 2 0 -1 0 0 -1 0 2 -1 0 0 0 -1 -1 2 -1 0 0 0 0 -1 2 -1 0 0 0 0 -1 2 =A and Q= 0 1 v-u 1 1 1 1 0 1 v-u 1 1 u-v 1 0 v-u 1 1 1 u-v u-v 0 v-u 1 1 1 1 u-v 0 v-u 1 1 1 1 u-v 0 .

Type E7: The Dynkin diagram is

1 2 3 4 5 6 7

and C= 2 0 -1 0 0 0 0 0 2 0 -1 0 0 0 -1 0 2 -1 0 0 0 0 -1 -1 2 -1 0 0 0 0 0 -1 2 -1 0 0 0 0 0 -1 2 -1 0 0 0 0 0 -1 2 =A and Q= 0 1 v-u 1 1 1 1 1 0 1 v-u 1 1 1 u-v 1 0 v-u 1 1 1 1 u-v u-v 0 v-u 1 1 1 1 1 u-v 0 v-u 1 1 1 1 1 u-v 0 v-u 1 1 1 1 1 u-v 0 .

Type E8:

1 2 3 4 5 6 7 8

and C= 2 0 -1 0 0 0 0 0 0 2 0 -1 0 0 0 0 -1 0 2 -1 0 0 0 0 0 -1 -1 2 -1 0 0 0 0 0 0 -1 2 -1 0 0 0 0 0 0 -1 2 -1 0 0 0 0 0 0 -1 2 -1 0 0 0 0 0 0 -1 2 =A and Q= 0 1 v-u 1 1 1 1 1 1 0 1 v-u 1 1 1 1 u-v 1 0 v-u 1 1 1 1 1 u-v u-v 0 v-u 1 1 1 1 1 1 u-v 0 v-u 1 1 1 1 1 1 u-v 0 v-u 1 1 1 1 1 1 u-v 0 v-u 1 1 1 1 1 1 u-v 0 .

Type F4: The Dynkin diagram is

1 2 3 4

and C= 2 -1 0 0 -1 2 -2 0 0 -1 2 -1 0 0 -1 2 and A= 2 -1 0 0 -1 2 -2 0 0 -2 4 -2 0 0 -2 4 and Q= 0 v-u 1 1 u-v 0 v-u2 1 1 u-v2 0 v-u 1 1 u-v 0 and D=diag1122.

Type G2: The Dynkin diagram is

1 2

and C= 2 -3 -1 2 , A= 2 -3 -3 6 , Q= 0 v-u3 u-v3 0 , with 1 0 0 3 . and D=diag1122.

Type A51:The Dynkin diagram is

0 1 2 3 4 5

and

Q= 0 v-u 1 1 u-v u-v 0 v-u 1 1 1 u-v 0 v-u 1 1 1 u-v 0 v-u v-u 1 1 u-v 0

Passing to the nonsimply laced case (following Reinecke and Lusztig's book), C˜ = a ˜ ij i,j I ˜ an indecomposable Cartan matrix. C ˜ is a quotient of a simply laced Cartan matrix C= aij i,jI under the action of a cyclic group Z on I. Then I ˜ = orbits of Z on I . There is an induced action of Z on U+ and on B. Then B ˜ = Z fixed points in B f˜ i b ˜ = b ˜   there is a sequence  b= f ˜ ir f ˜ i1b  in  B such that  i1,,ir   is a Z-orbit in I. In this form Cn comes from A2n-1:

/2=Z
Bn comes from Dn+1:
/2=Z
F4 comes from E6:
/2=Z
G2 comes from D4:
/3=Z
Al-11 comes from A:
=Z

References

[D] V.G. Drinfeld, Quantum Groups, Vol. 1 of Proccedings of the International Congress of Mathematicians (Berkeley, Calif., 1986). Amer. Math. Soc., Providence, RI, 1987, pp. 198–820. MR0934283

[DHL] H.-D. Doebner, Hennig, J. D. and W. Lücke, Mathematical guide to quantum groups, Quantum groups (Clausthal, 1989), Lecture Notes in Phys., 370, Springer, Berlin, 1990, pp. 29–63. MR1201823

[J] N. Jacobson, Lie algebras, Interscience Publishers, New York, 1962.

page history