The Chain Rule

Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville, VIC 3010 Australia
aram@unimelb.edu.au

Last update: 20 July 2012

The Chain Rule

There are different kinds of derivatives:

Derivative with respect to xDerivative with respect to g fddxdfdx fddgdfdg This one satisfiesThis one satisfies dxdx=1, dgdg=1, dcfdx=cdfdx,if c is a constant, dcfdg=cdfdg,if c is a constant, dy+zdx=dydx+dzdx, dy+zdg=dydg+dzdg, dyzdx=ydzdx+dydxz, dyzdg=ydzdg+dydgz,

What is the relation betweendfdxanddfdg?

ddg ddx dg0dg=d1dg=0, dg0dx=d1dx=0, dgdg=1, dgdx=dgdx, dg2dg=dg·gdg dg2dx=dg·gdx =gdgdg+dgdgg =gdgdx+dgdxg =g+g=2g, =2gdgdx, dg3dg=dg2·gdg dg3dx=dg2·gdx =g2dgdg+dg2dgg =g2dgdx+dg2dxg =g2+2g·g=3g2, =g2dgdx+2gdgdxg =g2dgdx+2g2dgdx =3g2dgdx, dg4dg=dg3·gdg dg4dx=dg3·gdx =g3dgdg+dg3dgg =g3dgdx+dg3dxg =g3+3g2·g=4g3, =g3dgdx+3g2dgdxg =g3dgdx+3g3dgdx =4g3dgdx, dg6342dg=6342g6341, dg6342dx=6342g6341dgdx, d3g2+2g+7dg=d3g2dg+d2gdg+d7dg d3g2+2g+7dx=d3g2dx+d2gdx+d7dx =3dg2dg+2dgdg+0 =3dg2dx+2dgdx+0 =3·2g+2·1 =3·2gdgdx+2dgdx =6g+2, =6g+2dgdx,

Thus, we are seeing that

dfdx=dfdgdgdx,which is the chain rule.

 

Example:  Find dydx when y=2x-52. If g=2x-5 then y=g2. dydx=dydgdgdx=dg2dgd2x-5gdx=2g2-0=22x-5·2 =42x-5=8x-20.

 

Example:  Find dydx when y=3x-43. If g=3x-4 then y=g3. dydx=dydgdgdx=dg3dgd3x-4gdx=3g23-0=93x-42 =99x2-24x+16=81x2-72x+144.

 

Example:  Find dydx when y=2x-523x-43. dydx=d2x-523x-43dx=2x-52d3x-43dx+d2x-52dx3x-43 =2x-52·33x-42·3+22x-5·23x-43 =2x-53x-4292x-5+43x-4=2x-53x-4230x-61.

 

Example:  Find dxm/ndx when m and n are integers, n0. dxm/nndx=dxmdx=mxm-1.On the other handdxm/nndx=nxm/nn-1dxm/ndx. Somxm-1=nxm/nn-1dxm/ndxand we can solve fordxm/ndx. dxm/ndx=mxm-1nxm/nn-1=mxm-1nxm/nnxm/n-1 =mxm-1nxm1xm/n=mnx-1xm/n=mnxm/n-1.

 

Example:  Find dydx when y=x1-2x. dydx=dx1-2xdx=dx1-2x-1dx=dx1-2x1/2-1dx =dx1-2x-1/2dx=xd1-2x-1/2dx+dxdx1-2x-1/2 =x-121-2x-3/2d1-2xdx+1·11-2x =-x21-2x-3/2·-2+11-2x1/2=x+1-2x1-2x3/2=1-x1-2x3/2.

 

Example:  Find dydx when y=1+x21-x2. dydx=d1+x21-x2dx=d1+x21/21-x21/2dx=d1+x21-x21/2dx =12·1+x21-x21/2-1d1+x21-x2dx =12·1+x21-x2-1/2d1+x21-x2-1dx =12·1-x21+x21/21+x2d1-x2-1dx+d1+x2dx1-x2-1 =12·1-x21+x21/21+x2-11-x2-2d1-x2-1dx+2x1-x2-1 =12·1-x21+x21/2-11+x2-2x1-x22+2x1-x2 =12·1-x21+x21/22x1+x21-x22+2x1-x21-x22 =12·1-x21+x21/22x1+x2+1-x21-x22 =12·1-x21/21+x21/2·4x1-x22=2x1+x21/21-x23/2.

 

Example:  Differentiate x21+x2 with respect to x2. This is the same problem as: Find dzdp when z=x21+x2 and p=x2. Since dzdx=dzdpdpdx,dzdp=dz/dxdp/dx. So dzdp=ddxx21+x2ddxx2=dx21+x2-1dxdx2dx=x2d1+x2-1dx+dx2dx1+x2-12x =x2-11+x2-2d1+x2dx+2x1+x2-12x =-x21+x22·2x+2x1+x22x=-x21+x22+11+x2 =-x2+1+x21+x22=11+x22.

 

Example:  Find dydx when x4+y4=4a2x2y2. dx4+y4dx=d4a2x2y2dx.Sodx4dx+dy4dy=4a2dx2y2dy. So4x3+4y3dydx=4a2x2dy2dx+dx2dxy2. So4x3+4y3dydx=4a2x22ydydx+2xy2 =4a2x22ydydx+4a22xy2. So4x3-4a22xy2=4a2x22ydydx-4y3dydx. So4x3-4a22xy2=4a2x22y-4y3dydx. So4x3-4a22xy24a2x22y-4y3=dydx. Sodydx=x3-2a2xy22a2x2y-y3. All we did is take the derivative of both sides and then solve for dydx.

 

Example:  Find dydx when x=3at1+t3andy=3at21+t3 Since y=3at21+t3=3at1+t3t=xt,dydx=xdtdx+dxdx·t=xdtdx+t. What is dtdx?? Since dxdx=dxdtdtdx,dtdx=dx/dxdx/dt=1dx/dt So dtdx=1dx/dt=1ddt3at1+t3=1d3at1+t3-1dt =13at-11+t3-2d1+t3dt+3a1+t3-1 =1-3at1+t323t2+3a1+t3=1-9at3+3a1+t31+t32 =1+t32-9at3+3a1+t3=1+t323a-6at3. So dydx=xdtdx+t=3at1+t31+t323a1-2t3+t =t1+t31-2t3+t1-2t31-2t3=t+t4+t-2t41-2t3=2t-t41-2t3

Notes

These notes are from lecture notes of Arun Ram from May 20, 2004.

page history