Last updates: 8 December 2010
There are at least two natural ways of defining the group . The isomorphism which shows that these two definitions are the same is given in the righmost column of the following table.
| Set | Operation | Multiplication Table | Isomorphism | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| ordinary multiplication of integers |
|
|||||||||||
| addition modulo |
|
| Center | Abelian | Conjugacy classes | Subgroups |
|---|---|---|---|
| Yes |
| Element | Order | Centralizer |
|---|---|---|
| Generators | Relations |
|---|---|
| Homomorphism | Kernel | Image |
|---|---|---|
|
|
| Subgroups | Structure | Order | Index | Normal | Quotient group |
|---|---|---|---|---|---|
| Yes | |||||
| Yes |
| Subgroups | Normalizer | Centralizer |
|---|---|---|
| Subgroups | Left Cosets | Right Cosets |
|---|---|---|
[CM] H. S. M. Coxeter and W. O. J. Moser, Generators and relations for discrete groups, Fourth edition. Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], 14. Springer-Verlag, Berlin-New York, 1980. MR0562913 (81a:20001)
[GW1] F. Goodman and H. Wenzl, The Temperly-Lieb algebra at roots of unity, Pacific J. Math. 161 (1993), 307-334. MR1242201 (95c:16020)