Last updates: 8 December 2010
There are at least two natural ways of defining the group . The isomorphism which shows that these two definitions are the same is given in the righmost column of the following table.
Set | Operation | Multiplication Table | Isomorphism | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
ordinary multiplication of integers |
|
|||||||||||
addition modulo |
|
Center | Abelian | Conjugacy classes | Subgroups |
---|---|---|---|
Yes |
Element | Order | Centralizer |
---|---|---|
Generators | Relations |
---|---|
Homomorphism | Kernel | Image |
---|---|---|
|
Subgroups | Structure | Order | Index | Normal | Quotient group |
---|---|---|---|---|---|
Yes | |||||
Yes |
Subgroups | Normalizer | Centralizer |
---|---|---|
Subgroups | Left Cosets | Right Cosets |
---|---|---|
[CM] H. S. M. Coxeter and W. O. J. Moser, Generators and relations for discrete groups, Fourth edition. Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], 14. Springer-Verlag, Berlin-New York, 1980. MR0562913 (81a:20001)
[GW1] F. Goodman and H. Wenzl, The Temperly-Lieb algebra at roots of unity, Pacific J. Math. 161 (1993), 307-334. MR1242201 (95c:16020)