The Dihedral Group D 4 of Order Eight
Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville, VIC 3010 Australia
aram@unimelb.edu.au
Last updates: 26 January 2011
The dihedral group D 4 of order eight
The groups D 4 is as in the following table.
Set Operation
D 4 =
1 , x , x 2 , x 3 ,
y , x y , x 2 y , x 3 y
x i y j
x k y l =
x i - k mod 4
y j + l mod 2
The complete multiplication tables for D 4 is as follows.
Multiplication table
D 4
1
x
x 2
x 3
y
x y
x 2 y
x 3 y
1
1
x
x 2
x 3
y
x y
x 2 y
x 3 y
x
x
x 2
x 3
1
x y
x 2 y
x 3 y
y
x 2
x 2
x 3
1
x
x 2 y
x 3 y
y
x y
x 3
x 3
1
x
x 2
x 3 y
y
x y
x 2 y
y
y
x 3 y
x 2 y
x y
1
x 3
x 2
x
x y
x y
y
x 3 y
x 2 y
x
1
x 3
x 2
x 2 y
x 2 y
x y
y
x 3 y
x 2
x
1
x 3
x 3 y
x 3 y
x 2 y
x y
y
x 3
x 2
x
1
Center Abelian Conjugacy classes Subgroups
Z D 4 =
1 , x 2
No
𝒞 1
=
1
H 0 =
D 4
𝒞 x 2
=
x 2
H 1 =
1 , x , x 2 , x 3
𝒞 y
=
y , x 2 y
H 2 =
1 , x 2 , y , x 2 y
𝒞 x y
=
x y , x 3 y
H 3 =
1 , x 2 , x y , x 3 y
𝒞 x
=
x , x 3
H 4 =
1 , x 2
H 5 =
1 , y
H 6 =
1 , x y
H 7 =
1 , x 2 y
H 8 =
1 , x 3 y
H 9 =
1
Element g
Order ο g
Centralizer Z g
Conjugacy Class 𝒞 g
1
1
D 4
𝒞 1
x
4
H 1
𝒞 x
x 2
2
D 4
𝒞 x 2
x 3
4
H 1
𝒞 x
y
2
H 2
𝒞 y
x y
2
H 3
𝒞 x y
x 2 y
2
H 2
𝒞 y
x 3 y
2
H 3
𝒞 x y
Generators
Relations
D 4
x , y
x 4 = y 2 = 1
y x = x - 1 y
Subgroups H i
Structure
Index
Normal
Quotient group
H 0 =
D 4
H 0 = D 4
D 4 : D 4
=
1
Yes
D 4
/ H 0 ≅
⟨ 1 ⟩
H 1 =
1 , x , x 2 , x 3
H 1 ≅
C 4
D 4 : H 1
=
2
Yes
D 4
/ H 1 ≅
C 2
H 2 =
1 , x 2 , y , x 2 y
H 2
≅ C 2 × C 2
D 4 : H 2
= 2
Yes
D 4
/ H 2 ≅
C 2
H 3 =
1 , x 2 , x y , x 3 y
H 3
≅ C 2 × C 2
D 4 : H 3
= 2
Yes
D 4
/ H 3 ≅
C 2
H 4 =
1 , x 2
H 4 ≅ C 2
D 4 : H 4
= 4
No
H 5 =
1 , y
H 5 ≅ C 2
D 4 : H 5
= 4
No
H 6 =
1 , x y
H 6 ≅ C 2
D 4 : H 6
= 4
No
H 7 =
1 , x 2 y
H 7 ≅ C 2
D 4 : H 7
= 4
No
H 8 =
1 , x 3 y
H 8 ≅ C 2
D 4 : H 8
= 4
No
H 9 =
1
H 9 = ⟨ 1 ⟩
D 4 : ⟨ 1 ⟩
= 1
Yes
D 4
/ H 9 ≅
D 4
Orders
Inclusions
8
4
2
1
D 4
⟨ x ⟩ =
{
1 , x , x 2 , x 3
}
{
1 , x 2 , y , x 2 y
}
{
1 , x 2 , x y , x 3 y
}
⟨ x 2 ⟩ =
{
1 , x 2
}
⟨ y ⟩ =
{
1 , y
}
⟨ x 2 y ⟩ =
{
1 , x 2 y
}
⟨ x y ⟩ =
{
1 , x y
}
⟨ x 3 y ⟩ =
{
1 , x 3 y
}
{ 1 }
Subgroups H i
Left Cosets
Right Cosets
H 0 = D 4
D 4 = x D 4
= x 3 D 4 = y D 4
D 4 = D 4 x =
D 4 x 2 =
D 4 x 3
= D 4 y
= x y D 4
= x 2 y D 4
= x 3 y D 4
=
D 4 x y =
D 4 x 2 y =
D 4 x 3 y
H 1
=
1 , x , x 2 , x 3
H 1
= x H 1 = x 2 H 1
= x 3 H 1
H 1 = H 1 x =
H 1 x 2 = H 1 x 3
=
1 , x , x 2 , x 3
=
1 , x , x 2 , x 3
y H 1 = x y H 1
= x 2 y H 1 =
x 3 y H 1
H 1 y = H 1 x y =
H 1 x 2 y =
H 1 x 3 y
=
y , x y , x 2 y , x 3 y
=
y , x y , x 2 y , x 3 y
H 2 =
1 , x 2 , y , x 2 y
H 2 = x 2 H 2
= y H 2 = x 2 y H 2
H 2 = H 2 x 2
= H 2 y = H 2
x 2 y
=
1 , x 2 , y , x 2 y
=
1 , x 2 , y , x 2 y
x H 2 = x 3 H 2 =
x y H 2 =
x 3 y H 2
H 2 x = H 2 x 3 =
H 2 x y = H 2 x 3
y
=
x , x 3 , x y , x 3 y
=
x , x 3 , x y , x 3 y
H 3 =
1 , x 2 , x y , x 3 y
H 3 = x 2 H 3
= x y H 3 = x 3 y
H 3
H 3 = H 3 x 2
= H 3 x y = H 3
x 3 y
=
1 , x 2 , x y , x 3 y
=
1 , x 2 , x y , x 3 y
x H 3 = x 3 H 3
= y H 3 = x 2 y
H 3
H 3 x = H 3 x 3 =
H 3 y = H 3 x 2 y
=
x , x 3 , y , x 2 y
=
x , x 3 , y , x 2 y
H 4 =
1 , x 2
H 4 = x 2 H 4
=
1 , x 2
H 4 = H 4 x 2
=
1 , x 2
x H 4 = x 3 H 4
=
x , x 3
H 4 x = H 4 x 3
=
x , x 3
y H 4 = x 2 y H 4
=
y , x 2 y
H 4 y = H 4 x 2 y
=
y , x 2 y
x y H 4 =
x 3 y H 4 =
x y , x 3 y
H 4 x y =
H 4 x 3 y =
x y , x 3 y
H 5 =
1 , y
H 5 = y H 5
=
1 , y
H 5 = H 5 y
=
1 , y
x H 5 =
x y H 5 =
x , x y
H 5 x =
H 5 x 3 y =
x , x 3 y
x 2 H 5 =
x 2 y H 5 =
y , x 2 y
H 5 x 2 =
H 5 x 2 y =
x 2 , x 2 y
x 3 H 5 =
x 3 y H 5 =
x 3 , x 3 y
H 5 x 3 =
H 5 x y =
x 3 , x y
H 6 =
1 , x y
H 6 = x y H 6 =
1 , x y
H 6 = H 6 x y =
1 , x y
x H 6 = x 2 y H 6
=
x , x 2 y
H 6 x = H 6 x 2 y
=
x , y
x 2 H 6
= x 3 y H 6
=
x 2 , x 3 y
H 6 x 2
= H 6 x 3 y
=
x 2 , x 3 y
x 3 H 6
= y H 6
=
x 3 , y
H 6 x 3
= H 6 x 2 y
=
x 3 , x 2 y
H 7 =
1 , x 2 y
H 7 =
x 2 y H 7 =
x , x 2 y
H 7 =
H 7 x 2 y
=
1 , x 2 y
x H 7 =
x 3 y H 7 =
x , x 3 y
H 7 x =
H 7 x y =
x , x y
x 2 H 7 =
y H 7 =
x 2 , y
H 7 x 2 =
H 7 y =
x 2 , y
x 3 H 7 =
x y H 7 =
x 3 , x y
H 7 x 3 =
H 7 x 3 y =
x 3 , x 3 y
H 8 =
1 , x 3 y
H 8 = x 3 y H 8
=
1 , x 3 y
H 8 = H 8 x 3 y =
1 , x 3 y
x H 8 = y H 8 =
x , y
H 8 x = H 8 x 2 y =
x 2 y , y
x 2 H 8 =
x y H 8 =
x 2 , x y
H 8 x 2 =
H 8 x y =
x 2 , x y
x 3 H 8 =
x 2 y H 8
=
x 3 , x 2 y
H 8 x 3 = H 8 y =
x 3 , y
H 9 =
1
H 9 =
1
,
x H 9 =
x
,
H 9 =
1
,
H 9 x =
x
,
x 2 H 9 =
x 2
,
x H 9 =
x
,
H 9 x 2 =
x 2
,
H 9 x 3 =
x 3
,
y H 9 =
y
,
x y H 9 =
x y
,
H 9 y =
y
,
H 9 x y =
x y
,
x 2 y H 9 =
x 2 y
,
x 3 y H 9 =
x 3 y
,
H 9 x 2 y =
x 2 y
,
H 9 x 3 y =
x 3 y
,
Subgroups H i
Normalizer N H i
Centralizer Z H i
H 0 = D 4
H 0 = D 4
Z D 4 =
H 4 =
⟨ x 2 ⟩
H 1 =
⟨ x ⟩
D 4
H 1 =
⟨ x ⟩
H 2 =
⟨ x 2 , y ⟩
D 4
H 2 =
⟨ x 2 , y ⟩
H 3 =
⟨ x 2 , x y ⟩
D 4
H 3 =
⟨ x 2 , x y ⟩
H 4 =
⟨ x 2 ⟩
D 4
D 4
H 5 =
⟨ y ⟩
H 2 =
⟨ x 2 , y ⟩
H 2 =
⟨ x 2 , y ⟩
H 6 =
⟨ x y ⟩
H 3 =
⟨ x 2 , x y ⟩
H 3 =
⟨ x 2 , x y ⟩
H 7 =
⟨ x 2 y ⟩
H 2 =
⟨ x 2 , y ⟩
H 2 =
⟨ x 2 , y ⟩
H 8 =
⟨ x 3 y ⟩
H 3 =
⟨ x 2 , x y ⟩
H 3 =
⟨ x 2 , x y ⟩
H 9 =
⟨ 1 ⟩
D 4
D 4
Homomorphism
Kernel
Image
ϕ 0 :
D 4
→
⟨ 1 ⟩
s 1
↦
1
s 2
↦
1
ker ϕ 0 =
D 4
im ϕ 0 = ⟨ 1 ⟩
ϕ 1 :
D 4
→
μ 2
x
↦
1
y
↦
- 1
ker ϕ 1 =
H 1
im ϕ 1
= μ 2
ϕ 2 :
D 4
→
μ 2
x
↦
- 1
y
↦
1
ker ϕ 2 =
1 , x 2 , y , x 2 y
= H 2
im ϕ 2
= μ 2
ϕ 3 :
D 4
→
μ 2
x
↦
- 1
y
↦
- 1
ker ϕ 3 =
1 , x 2 , x y , x 3 y
= H 2
im ϕ 3
= μ 2
ϕ 4 :
D 4
→
μ 2 × μ 2
x
↦
- 1
1
y
↦
1
- 1
ker ϕ 4 =
1 , x 2
= H 4
im ϕ 4
= μ 2 × μ 2
ϕ 9 :
D 4
→
D 4
x
↦
x
y
↦
y
ker ϕ 3 =
1
= H 9
im ϕ 9
= D 4
References
[CM]
H. S. M. Coxeter and W. O. J. Moser, Generators and relations for discrete groups ,
Fourth edition. Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], 14. Springer-Verlag, Berlin-New York, 1980.
MR0562913 (81a:20001)
[GW1]
F. Goodman and H. Wenzl,
The Temperly-Lieb algebra at roots of unity , Pacific J. Math. 161 (1993), 307-334.
MR1242201 (95c:16020)
page history