The double affine Hecke algebra

Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville, VIC 3010 Australia
aram@unimelb.edu.au

Last update: 17 September 2012

The double affine Hecke algebra

With T0 as in (2.4), the double affine Hecke algebra Hn is the quotient of by

( T0-u012 ) ( T0+u0-12 ) =0, ( T0-un12 ) ( T0+un-12 ) =0, ( T0-t012 ) ( T0+t0-12 ) =0, ( Tn-tn12 ) ( Tn-tn-12 ) =0,and (3.17) ( Ti-t12 ) ( Ti+t-12 ) =0,for i=1,,n-1.

Let Xε1,, Xεn and Yε1,, Yεn be the elements of defined in (2.3). The following theorem establishes the "Bernstein presentation" of the double affine Hecke algebra. Often this presentation is used as the definition of the double affine Hecke algebra. The affine Weyl group

Xwμ=wXμ w-1,for μ𝔥*and wW. (3.18)

Similarly, thhe affine Weyl group

W= { Xμvμ 𝔥*,vW0 } acts onY= { qk/2Yλ k,λ 𝔥 } ,by conjugation.

Write

Ywλ=w Yλw-1, forwWand λ𝔥. (3.19)

In particular,

Ys0ε1 = s0Yε1 s0=q-1 Y-ε1and Ys0εj s0Yεj s0=Yεj ,forj=2,,n . (3.20)

  1. Let ti12=ui12 =t12 for i=1,,n-1. The algebra Hn is the quotient of n by the relations

    Ti-Ti-1= ti12- ti-12,for i=0,1,,n.

    and

    TiXμ=Xsiμ Ti+ ( ( ti12- ti-12 ) + ( ui12- ui-12 ) Xαi ) ( Xμ- Xsiμ ) 1-X2αi ,

    for i=0,,n, where Xsiμ is defined in (3.18),

    Xα0=q12 X-ε1, αn=εn,and αi=εi- εi+1,for i=1,,n-1.
  2. The algebra Hn is the quotient of n by the relations

    T0- (T0)-1= un12- un-12, Tn-Tn-1= tn12- tn-12, Ti-Ti-1= t12-t-12, fori=1,,n-1,

    and

    TiYλ = YsiλTi+ ( t12- t-12 ) Yλ- Ysiλ 1-Y-αi ,fori=1,, n-1, TnYλ = YsnλTn+ ( ( tn12- tn-12 ) + ( t012- t0-12 ) Y-εn ) 1-Y-2εn ( Yλ- Ysnλ ) ,and T0Yλ = Ys0λ T0+ ( ( un12- un-12 ) + ( u012- u0-12 ) Y-α0 ) 1-Y-2α0 ( Yλ- Ys0λ ) .

    where Ysiλ is as defined in (3.19),

    Yα0=q-12 Y-ε1, αn=εn, andαi=εi -εi+1,for i=1,,n-1.

Proof.

Following [M03, p. 81]: Since T0=q-12 Xε1T0-1,

T0Xα0- X-α0T0 = T0q12X-ε1 -q-12Xε1T0 = T0q12X-ε1 -q-12Xε1 ( T0-1+ t012- t0-12 ) = (T0)-1- T0- ( t012- t0-12 ) q-12Xε1 = - ( u012- u0-12 ) - ( t012- t0-12 ) q-12Xε1 = ( ( t012- t0-12 ) + ( u012- u0-12 ) q12X-ε1 ) q12X-ε1 -q-12Xε1 1-qX-2ε1 = ( ( t012- t0-12 ) + ( u012- u0-12 ) Xα0 ) Xα0- X-α0 1-X2α0 ,

and, since X-εn Tn-1=Tn T1T0T1-1 Tn-1 is conjugate to T0,

TnXαn- X-αnTn = TnXεn- X-εnTn = TnXεn- X-εn ( Tn-1+tn12 -tn-12 ) = - ( un12- un-12 ) - ( tn12- tn-12 ) X-εn = ( ( tn12- tn-12 ) + ( un12- un-12 ) Xεn ) Xεn- X-εn 1-X2εn .

Since Yα0= q-12 Y-ε1 and T0= (T0)-1 q-12 Y-ε1,

T0Yα0- Y-α0T0 = ( (T0)-1 + ( un12- un-12 ) ) q-12 Y-ε1- q12 Yε1 T0 = (T0)-1 q-12 Y-ε1- q12 Yε1 T0+ ( un12- un-12 ) Yα0 = ( u012- u0-12 ) + ( un12- un-12 ) Yα0 = ( ( u012- u0-12 ) Y-α0 + ( un12- un-12 ) ) Yα0 - Y-α0 1- Y-2α0 ,

and, since Tn-1 Yεn= Tn-1 Tn-1-1 T1-1T0 T1Tn conjugate to T0,

TnYαn- Y-αn Tn = TnYεn- Y-εnTn = ( Tn-1+ ( tn12- tn-12 ) ) Yεn- Y-εn Tn = ( Tn-1 Yεn ) - ( Tn-1 Yεn ) -1 + ( tn12- tn-12 ) Yεn = ( ( t012- t0-12 ) Y-εn + ( tn12- tn-12 ) ) Yεn- Y-εn 1-Y-2εn .

SOME REMARK ABOUT LINEARITY.

(Duality) [M03, (4.7.6)] The involution ι:n n in Proposition 2.4 descends to an involution ι:HH given by

ι(q12)= q-12, ι(t12)= t-12, ι(tn12)= tn-12, ι(u012)= u0-12, ι(un12)= t0-12, ι(T0)= T0-1, ι(T0)= (T0)-1 ,ι(Ti)= Ti-1,for i=1,,n.

Proof.

A straightforward check shows that the relations in (3.17) are preserved.

In an attempt to relation the notations in [M03, §4.7], [S99, §3] and [C03, Def. 2.1] let

τ0=u012, τn=un12 ,τ0=t012, τn=tn12, andτi=τi =t12fori=1 ,,n-1.

The summary of (1.5.1), (4.4.1), (4.4.2), (4.4.3), and (5.1.4) in [M03] is that

τa= (tat2a)12 =q12κa= q 12 (k(a)+k(2a)) ,and τa=ta12= q12κa= q 12 (k(a)+k(2a)) .

In our situation

τn = tn12 = q12κn = tεn12 t2εn12 = q 12k(εn)+ 12k(2εn) = q 12k1+ 12k2 , τn = un12 = q12κn = tεn12 = q 12k(εn)- 12k(2εn) = q 12k1- 12k2 , τ0 = t012 = q12κ0 = t -ε1+ 12δ 12 t -2ε1+δ 12 = q 12k (ε1+12δ) +k (-2ε1+δ) = q 12k3+ 12k4 , τ0 = u012 = q12κ0 = t -ε1+ 12δ 12 = q 12k (ε1+12δ) -k (-2ε1+δ) = q 12k3- 12k4 , τi = t12 = q12κ = t εi-εi+1 12 = q12k5 ,

for i=1,,n-1, and the formulas in [M03, (1.5.1)] correspond to interchanging κ0 and κn.

The other classical affine root systems are obtained from this one by setting some of the ta equal to 1. EXPAND ON THIS STATEMENT!

Intertwiners

REPLACE THE Yα0s IN THIS SUBSECTION.

From Theorem 3.3(b) it follows that

τiYλ= Ysiλ τi,for i=0,1,2,,n.

if

τi = Ti+ t-12 (1-t) 1-Y-αi =Ti-1+ t-12 (1-t) 1-Y-αi 1-Y-αi ,fori=1,, n-1,and τn = Tn+ tn-12 (1-tn)+ t0-12 (1-t0) Y-εn 1-Y-2εn = Tn-1+ ( tn-12 (1-tn)+ t0-12 (1-t0) Yεn ) Y-2εn 1-Y-2εn , τ0 = T0+ un-12 (1-un)+ u0-12 (1-u0) Y-α0 1-Y-2α0 = (T0)-1 ( un-12 (1-un)+ u0-12 (1-u0) Yα0 ) Y-2α0 1-Y-2α0 ,

The operators τ0,,τn satisfy the relations

τ0 τ1 τ2 τn-2 τn-1 τn

and

(τ0)2 = un-1 ( u012 un12 -Yα0 ) ( u0-12 un12 +Yα0 ) ( u012 un12 -Y-α0 ) ( u0-12 un12 +Y-α0 ) (1-Yα0) (1+Yα0) (1-Y-α0) (1+Y-α0) , (τn)2 = tn-1 ( t012 tn12 -Yεn ) ( t0-12 tn12 +Yεn ) ( t012 tn12 -Y-εn ) ( t0-12 tn12 +Y-εn ) (1-Yεn) (1+Yεn) (1-Y-εn) (1+Y-εn) , (τi)2 = ( t12- t-12 Y-αi ) ( t12- t-12 Yαi ) (1-Y-αi) (1-Yαi) , fori=1,,n-1.

Proof.
(τn)2 = τn ( Tn- ( tn12- tn-12 ) + ( t012- t0-12 ) Y-εn 1-Y-2εn ) = τnTn- ( tn12- tn-12 ) + ( t012- t0-12 ) Yεn 1-Y2εn τn = Tn2- ( tn12- tn-12 ) + ( t012- t0-12 ) Y-εn 1-Y-2εn Tn- ( tn12- tn-12 ) + ( t012- t0-12 ) Yεn 1-Y2εn Tn + ( tn12- tn-12 ) + ( t012- t0-12 ) Yεn 1-Y2εn + ( tn12- tn-12 ) + ( t012- t0-12 ) Y-εn 1-Y-2εn = ( tn12- tn-12 ) Tn+ (1-Y2εn) (1-Y-2εn) (1-Y2εn) (1-Y-2εn) + ( ( tn12- tn-12 ) + ( t012- t0-12 ) Yεn ) ( 1-Y2εn ) ( ( tn12- tn-12 ) + ( t012- t0-12 ) Y-εn ) ( 1-Y-2εn ) + ( - ( tn12- tn-12 ) + ( t012- t0-12 ) Y-εn 1-Y-2εn + ( tn12- tn-12 ) Y-2εn + ( t012- t0-12 ) Y-εn 1-Y-2εn ) Tn = ( 1-Y2εn -Y-2εn+ 1+ ( tn12- tn-12 ) 2 + ( t012- t0-12 ) 2 + ( t012- t0-12 ) ( tn12- tn-12 ) Y-εn + ( tn12- tn-12 ) ( t012- t0-12 ) Yεn ) (1-Y2εn) (1-Y-2εn) = ( tn+tn-1 +t0+t0-1 -1-1-Y2εn -Y-2εn + ( t012 tn12- t012 tn-12- t0-12 tn12+ t0-12 tn-12 ) Y-εn + ( t012 tn12- t012 tn-12- t0-12 tn12+ t0-12 tn-12 ) Yεn ) (1-Yεn) (1+Yεn) (1-Y-εn) (1+Y-εn) = tn-1 ( t012 tn12- Yεn ) ( t0-12 tn12+ Yεn ) ( t012 tn12- Y-εn ) ( t0-12 tn12+ Y-εn ) (1-Yεn) (1+Yεn) (1-Y-εn) (1+Y-εn)

The formula for (τi)2 is established by exactly the same computation, except with t012 and tn12 both replaced by t12.

Question: Is the affine Hecke algebra a quotient of DAHA? This seems to be true on the braid group. NO?!? The obvious morphism would take T01 which would violate ( T0-un12 ) ( T0+un12 ) -0. Not clear that reps of affine Hecke would lift to DAHA. The 1 dimensional representations lift or do not lift?

Notes and References

This page is taken from a paper entitled Double affine braid groups and Hecke algebras of classical type by Arun Ram, March 5, 2009.

page history