Generalized matrix algebra structure

Generalized matrix algebra structure

Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville, VIC 3010 Australia
aram@unimelb.edu.au

Last updates: 5 November 2010

Generalized matrix algebras

Let A be an algebra and fix aA. The homotope algebra Aa is the algebra A with a new multiplication given by xy=xay, for x,yA. If p,q are invertible elements of A then the map Apaq Aa x qxp is an algebra isomorphism.

The radical of a homotope algebra

Let R be a PID and let A=MnR and let ϵA. The smith normal form says that there exist p,qGLnR such that pϵq= diag ϵ1,,ϵk ,0,,0,,0 , with ϵ1ϵ2 ϵk. Thus, Mnϵ Mnδ, where δ= diag ϵ1,,ϵk ,0,,0,,0 , and RadMnδ = xMn if xST0  then S>k  or T>k , Rad2Mnδ = xMn if xST0  then S>k  and T>k , and Rad3Mnδ =0.

RadAa = xA axaRadA and Rad3Aa RadA.

Proof.
The set I= xA axaRadA is an ideal in A since, if yA then axya= axayRadAa . Why and when is I=RadA??? Or do I care?

AB, both split semisimple

Assume AB is an inclusion of algebras and that A and B are split semisimple. Let A ˆ   be an index set for the irreducible  A-modulesAμ, B ˆ   be an index set for the irreducible  B-modulesBλ, and let A ˆ μ = Pμ   be an index set for a basis of the simple  A-module  Aμ, for each μ A ˆ (the composite Pμ is viewed as a single symbol). Let Γ be the two level graph
vertices on level A: A ˆ , vertices on level B: B ˆ , and mμλ   edges  μλ  if  Aμ  appears with multiplicity  mμλ   in  ResAB Bλ. 1.1
If λ B ˆ then
B ˆ λ= Pμλ μ A ˆ , Pμ A ˆ μ   and  μλ  an edge in  Γ 1.2
is an index set for a basis of the irreucible B-module Bλ. We think of B ˆ λ as the set of paths to λ and A ˆ μ as the "set of paths to μ" in the graph Γ. For example, the graph Γ for the symmetric group algebras A=S3 and B=S4 is picture goes here

Since A and B are split semisimple there exist sets of matrix units in the algebras A and B,

{ a PQ μ μ A ˆ , Pμ,Qμ A ˆ μ } and { b PQ μν λ λ B ˆ , Pμλ, Qνλ B ˆ λ } 1.3
respectively, so that
a PQ μ a ST ν = δμν δQS a PT μ and b PQ μγ λ b ST τν σ = δλσ δQS δγτ b PT μν λ , 1.4
and such that
a P Q μ b S T μ τ λ = δ Q S μ γ b P T μ τ λ and b S T σ τ λ a P Q μ = δ TP τμ b S Q σ μ λ . 1.5
Then
1= b SS μμ λ 1.6
and
a PQ μ =1 a PQ μ 1= ( b R R ρ ρ λ ) a PQ μ ( b S S σ σ γ ) = b P Q μ μ λ 1.7
where the sum is over all edges μλ in the graph Γ.

Now assume that B is a subalgebra of an algebra C and there is an element eC such that for all bB,

  1. ebe=ϵ1b, with ϵ1bA, and
  2. ϵ1a1ba2 =a1ϵ1ba2 for all a1,a2A, and
  3. ea=ae, for all aA.
Note that the map ϵ1: BB A b1b2 ϵ1b1b2 is an A,A  bimodule homomorphism.

Though it is not necessary for the following it is conceptually helpful to let C=BeB , let C ˆ = A ˆ and extend the graph Γ to a graph Γ ˆ with three levels, so that the edges between level B and level C are reflections of the edges between level A and level B. In other words, Γ ˆ has

vertices on level C: C ˆ , and an edge  λμ, λ B ˆ , μ C ˆ ,  for each edge  μλ, μ A ˆ , λ B ˆ . 1.8
For each ν C ˆ define
C ˆ ν= Pμλν μ A ˆ , λ B ˆ , ν C ˆ , Pμ A ˆ   and  μλ  and  λμ  are edges in  Γ ˆ , 1.9
so that C ˆ ν is te set of paths to ν in the graph Γ ˆ . In the previous example Γ ˆ is PICTURE GOES HERE

The element of A given by ϵ1 ( b P Q μ τ λ ) = ϵ1 ( a P P μ b P Q μ τ λ a Q Q τ ) = a P P μ ϵ1 ( b P Q μ τ λ ) a Q Q τ is zero unless μ=τ and

ϵ1 ( b P Q μ μ λ ) = ϵ1 ( a P R μ b R R μ μ λ a R Q μ )= a P R μ ϵ1 ( b R R μ μ λ ) a R Q μ = ϵμλ a P Q μ 1.10
for some constant ϵμλ which does not depend on P or Q (since it depends only on R which can be chosen freely). The element of C give by b P R μ ρ λ eb T Q τ ν σ = b P R μ ρ λ a R R ρ e b T Q τ ν σ = b P R μ ρ λ e a R R ρ b T Q τ ν σ is zero unless R=T and ρ=τ and b P R μ ρ λ eb R Q ρ ν σ = b P S μ ρ λ a S R ρ e b R Q ρ ν σ = b P S μ ρ λ e a S R ρ b R Q ρ ν σ = b P S μ ρ λ e b S Q ρ ν σ does not depend on the choice of R. If
c P Q μ ν λ σ γ = b P T μ γ λ e b T Q γ ν σ 1.11
then c P Q μ ν λ σ γ c R S τ ξ ρ η π = ( b P T μ γ λ e b T Q γ ν σ ) ( b R X τ π ρ e b X S π ξ η ) =δ Q R ν τ σρ b P T μ γ λ ϵ1 ( b T X γ π σ ) e b X S π ξ η = δ Q R ν τ σρ b P T μ γ λ δγπ ϵγσ a T X γ e b X S π ξ η = δ Q R ν τ σρ δπγ ϵγσ b P X μ γ λ e b X S γ ξ η = δ Q R ν τ σρ δπγ ϵγσ c P S μ ξ λ η γ . Define
e P Q μ ν λ σ γ = 1 ϵγσ c P Q μ ν λ σ γ , whenver ϵγσ 0. Then e P Q μ ν λ σ γ e R S τ ξ ρ η π = δ Q R ν τ σρ δγπ e P S μ ξ λ η γ 1.12
so that these are matrix units. Furthermore
b P Q μ ν λ e R S τ ξ ρ η π = δ Q R ν τ λρ e P S μ ξ λ η π and e P Q μ ν λ σ γ b R S τ ξ ρ = δ Q R ν τ σρ e P S μ ξ λ ρ γ 1.13
so that the bs are related to the es in the same way that the as are related to the b s. Then
e=1e1= ( b R R ρ ρ λ ) e ( b S S σ σ γ ) = b R R ρ ρ λ e b R R ρ ρ λ = c R R ρ ρ λ γ ρ = ϵργ e R R ρ ρ λ γ ρ . 1.14
In summary eb P Q μ τ λ e =δμτ ϵμλ a P Q μ e P Q μ ν λ σ γ = 1 ϵγσ b P T μ γ λ e b T Q γ ν σ b P Q μ ν λ = λγ e P Q μ ν λ λ γ and ee P A μ ν λ σ γ = δμγ ϵγλ γτγ e P Q γ ν τ σ γ .

RAL, for A semisimple.

Fix isomorphisms
L μ A ˆ A μ Lμ and R μ A ˆ Rμ A μ 1.15
where A μ, μ A ˆ μ are the simple left A -modules, A μ , μ A ˆ , are the simple right A -modules, and Lμ,Rμ,μ A ˆ are vector spaces. In other words, if A has matrix units { a P Q μ μ A ˆ , Pμ, Qμ A ˆ μ } then L has a basis lPX P A ˆ μ, X L ˆ μ R has a basis rYQ Q A ˆ μ, Y L ˆ μ such that
a P Q μ l R X ν =δμν δQR l P X μ and r Y S ν a P Q μ =δμν δSP l Y Q μ . 1.16
The map ϵ: L 𝔽 R A is determined by the constants ϵXYμ 𝔽 given by
ϵ ( l Q X μ r Y P μ ) = ϵXYμ a Q P μ 1.17
and ϵXYμ does not depend on Q and P since ϵ ( l S X λ r Y P μ ) = ϵ ( a S Q λ l Q X λ r Y P μ a P T μ ) = a S Q λ ϵ ( l Q X λ r Y P μ ) a P T μ = δλμ a S Q μ ϵXYμ a Q P μ a P T μ = ϵXYμ a S T μ . For each μ A ˆ construct a matrix
μ= ϵXYμ 1.18
and use row reduction (Smith normal form) to find invertible matrices
Dμ= DSTμ and Cμ= CZWμ such that Dμ μ Cμ = diag ϵXμ 1.19
is a diagonal matrix with diagonal entries denoted ϵXμ . The ϵPμ are the invariant factors of the matrix μ .

Using notation as in (???) define elements of RAL by

m X Y μ = r X P μ l P Y μ , and n X Y μ = Q1,Q2 CQ1Xμ DYQ2μ m Q1Q2 μ 1.20
where μ A ˆ ,X R ˆ μ, Y L ˆ μ .
  1. The sets { m X Y μ μ A ˆ , X R ˆ μ, Y L ˆ μ } and { n X Y μ μ A ˆ , X R ˆ μ, Y L ˆ μ } are bases of R A L , which satisfy m S T λ m Q P μ = δλμ ϵTQμ m S P μ and n S T λ n Q P μ = δλμ δTQ ϵTμ n S P μ , where ϵTQμ and ϵTμ are as defined in (1.17) and (1.19).
  2. The radical of the algebra RAL is Rad RAL = 𝔽-span { n Y T μ ϵYμ =0 or ϵTμ =0 } and the images of the elements e Y T μ = 1 ϵTμ n Y T μ ,for  ϵYμ 0  or  ϵTμ 0, are a set of matrix units in RAL / Rad RAL .

Proof.
  1. Since ( r S W λ l Z T μ ) = ( r S P λ a P W λ l Z T μ ) = ( R S P λ a P W λ l Z T μ ) = δλμ δWZ ( r S P λ l P T λ ) the element m X Y μ doe not depend on P and
    { m X Y μ μ A ˆ , X R ˆ μ, Y L ˆ μ } is a basis of RAL 1.22
    and hence RAL is a direct sum of generalized matrix algebras. If C-1 μ and D-1 μ are the inverses of the matrices Cμ and Dμ then x,Y C-1 XS μ D-1 TY μ n X Y μ = X,Y,Q1,Q2 C-1 XS μ CQ1Xμ m Q1Q2 μ DYQ2μ D-1 TY μ = Q1,Q2 δSQ1 δQ2T m Q1Q2 μ = m S T μ , and so the elements m S T μ can be written as a linear combination of the n X Y μ . Thus
    { n X Y μ μ A ˆ , X R ˆ μ, Y L ˆ μ } is a basis of RAL. 1.22
    By direct computation, m S T μ m Q P λ = ( r S W λ l W T λ ) ( r Q Z μ l Z P μ ) = ϵ ( l W T λ r Q Z μ ) l Z P μ = δλμ ( r S W λ ϵTQλ a W Z λ l Z P λ ) = δλμ ϵTQλ ( r S W λ l W P λ ) = δλμ ϵTQλ m S P λ , and
    n S T λ n U V μ = Q1, Q2, Q3, Q4 CQ1Sλ DTQ2λ m Q1Q2 λ CQ3Uμ DVQ4μ m Q3Q4 μ = Q1, Q2, Q3, Q4 δλμ CQ1Sλ DTQ2λ ϵQ1Q2μ CQ3Uμ DVQ4μ m Q3Q4 μ = δλμ Q1, Q4 δTU ϵTμ CQ1Sμ DVQ4μ m Q1Q4 μ = δλμ δTU ϵTμ n S V μ . 1.23
  2. Let I = 𝔽-span { n Y T μ ϵYμ =0 or ϵTμ =0 } The multipliction rule for the n Y T μ implies that I is an ideal of RAL . If n Y1T1 μ , n Y2T2 μ , n Y3T3 μ { n Y T μ ϵYμ =0 or ϵTμ =0 } then n Y1T1 μ n Y2T2 μ n Y3T3 μ = δT1Y2 ϵY2μ n Y1T1 μ n Y3T3 μ = δT1Y2 δT2Y3 ϵY2μ ϵT2μ n Y1T3 μ , since ϵY2μ =0 or ϵT2μ =0 . Thus any product n Y1T1 μ n Y2T2 μ n Y3T3 μ of three basis elements of I is 0. So I is an ideal of RAL consisting of nilpotent elements and so IRadRAL .

    Since e Y T λ e U V μ = 1 ϵTλ 1 ϵVμ n Y T λ n U V μ = δλμ δTU 1 ϵTλ ϵVλ ϵVλ n Y V λ = δλμ δTU e Y V λ modI, the images of the elements e Y T λ in (????) form a set of matrix units in the algebra RAL/I . Thus RAL/I is a split semisimple algebra and so IRadRAL .

The structure of Zϵ

Let ϵ: LDRC be a C,C  bimodule homomorphism. The left radical Lϵ and the right radical Rϵ of ϵ are defined by Lϵ = lL ϵlr RadC, for all rR , Rϵ = rR ϵlr RadC, for all lL , The map ϵ is nondegenerate if RadC=0, Lϵ=0, and Rϵ=0. Let C =C/RadC, L =L/Lϵ, R =R/Rϵ, and φ: RCL R C L r l rl Then kerφ is generated by RCLϵ and RϵCL , and we have that kerφRRϵ and LkerφLϵ. THne I=RadC+LC +kerφ is a nilpotent ideal of Aϵ, and Aϵ I A ϵ where the map ϵ : L D R C is a nondegenerate ( C , C ) bimodule homomorphism.

If ϵ:LDRC is nondegenerate and R is a projective C-module then there is a ( D,C ) bimodule homomorphism τ: R L* r λr: L C l ϵlr so that ϵ=evidτ and Aϵ A( evL ).

If C,D,L,R are finite dimensional vector spaces over 𝔽 and D=𝔽 then ϵ= ϵ0 evP: L0P* D R0P C, with P projective and imϵ0 RadC .

If ϵ=ϵ0evP with P finitely generated and projective then Aϵ-mod A ϵ0 -mod M eM where e=1- i piαi.

If imϵ RadC then RadAϵ0 =I=RadC RadD L0 R0 CL0 and Aϵ0 RadAϵ0 C RadC D RadD .

Duals and Projectives

Let L be a C-module and let Z=EndCL so that L is a ( C,Z ) bimodule. The dual module to L is the ( Z,C ) bimodule L*= HomCL,C. The evaluation map is the ( C,C ) bimodule homomorphism ev: LZL* C λl λl and the centralizer map is the ( Z,Z ) bimodule homomorphism ξ: L*CL Z λl zλ,l: L L m λml Recall that [Bou, Alg. II §4.2 Cor.]
  1. If L is a projective C-module if and only if 1imξ,
  2. If L is a projective C-module then ξ is injective,
  3. If L is a finitely generated projective C-module then ξ is bijective,
  4. If L is a finitely generated free module then ξ-1z = i bi* zbi, where b1,,bd is a basis of L and b1* , , bd* is the dual basis in M*.
Statement (a) says that L is projective if and only if there exist biL and bi* such that if  lL then l= i bi* l bi so that ξ i bi* bi =1.

References

[Bou] N. Bourbaki, Groupes et Algèbres de Lie, Masson, Paris, 1990.

[GW1] F. Goodman and H. Wenzl, The Temperly-Lieb algebra at roots of unity, Pacific J. Math. 161 (1993), 307-334. MR1242201 (95c:16020)

[GL1] J. Graham and G. Lehrer, Diagram algebras, Hecke algebras and decomposition numbers at roots of unity, Ann. Sci. École Norm Sup. (4) 36 (2004), 479-524. MR2013924 (2004k:20007)

[GL2] J. Graham and G. Lehrer, The two-step nilpotent representations of the extended affine Hecke algebra of type A, Compositio Math. 133 (2002), 173-197. MR1923581 (2004d:20004)

page history