Graphing

Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville, VIC 3010 Australia
aram@unimelb.edu.au

Last update: 25 July 2012

Basic graphs

Lines

y x 1 1 y=x y x -1 1 y=-x

Parabolas

y x 1 1 -1 y=x2 y x -1 1 1 y2=x

The Basic Circle

y x 1 -1 1 -1 All points that are distance 1 from the origin.

What is the equation of the basic circle?

Distances:

y x q p What is this distance?

For the moment, call it r.

p p p p q q q q r r r r

So

Area of the outer square = Area of the inner square + Area of 4 triangles p+q2 = r2 + 4·12pq

p q r Solve for r. r2=p+q2- 4·12pq = p2+2pq+q2-2pq =p2+q2 So r2=p2+q2 or r=p2+q2

This is the heavily used Pythagorean Theorem.

So what is the equation of the basic circle?

x2+y2=1 is all pointsxythat are distance 1 from the origin.

So x2+y2=1 is the equation of the basic circle.

The Basic Hyperbola x2-y2=1

Graphing Notes (a) If y=0 then x2=1. So x=±1. (b) If x=0 then -y2=1 which is impossible. (c) The equation is 1-yx2=1x2(divide both sides by x2).

If x gets very big 1x gets closer and closer to 0 and the equation gets closer and closer to 1-yx2=0. This is the same as yx2=1, which is the same as yx=±1, i.e. y=±x. So as x gets very large the equation gets closer and closer to y=x and y=-x.

y x -1 1 y=x y=-x

As x gets very negative the basic hyperbola gets closer and closer to y=x and y=-x.

Asymptotes y=xis an asymptote of the basic hyperbola as x y=-xis an asymptote of the basic hyperbola as x+ y=xis an asymptote of the basic hyperbola as x- y=-xis an asymptote of the basic hyperbola as x-

An asymptote of a graph y=fx as xa is another graph y=gx that the original graph y=fx gets closer and closer to as x gets closer and closer to a.

Example:    Graph  y=1x

y x -1 1 -1 1 (a) As x gets large 1x gets closer and closer to 0. (b) As x gets closer to 0 (from the positive side) 1x gets larger and larger. (c) As x gets closer to 0 (from the negative side) 1x gets more and more negative. (d) As x gets more and more negative 1x gets closer and closer to 0. (e) If x=1 then y=1 (f) If x=-1 then y=-1

Asymptotes y=0(The x axis) is an asymptote to y=1x as x y=0(The x axis) is an asymptote to y=1x as x- x=0(The y axis) is an asymptote to y=1x as x0+ x=0(The y axis) is an asymptote to y=1x as x0-

Shifting

Lines

y x y=0 y x y=1 y x y=-1 y x 7 y=7 y x -4 y=-4 y x 1 1 y=x y x 1 -1 y=x+1 y x 1 -1 y=x-1 y x 7 -7 y=x+7 y x 3 -3 y=x-3

Parabolas

y x 1 1 y=x2 y x 3 1 -1 y=x2+3 y x -1 -2 1 -1 y=x2-2 y x -1 -2 -3 1 y=x+22 y x 1 2 3 1 y=x-32 y x -1 -2 -3 3 4 y=x+22+3 y x 4 3 2 -5 -4 y=x-32-5 y x -1 -2 -3 3 4 y=x2+4x+7 y x 4 3 2 -5 -4 y=x2-6x+4

Circles

y x x2+y2=1 y x x-22+y2=1 y x 2 3 4 x2+y-32=1 y x -2 x2+y+22=1 y x 2 3 4 1 2 3 x-22+y-32=1 y x 2 3 4 1 2 3 x2-4x+y2-6y+12=0 y x -6 -5 -4 -1 -2 x+12+y+52=1 y x -6 -5 -4 -1 -2 x2-2x+y2+10y+25=0

Hyperbolas

y x x2-y2=1 y x x2-y-12=1 y=x+1 y=-x+1 y x 2 x-22-y2=1 y=x-2 y=-x+2 y x 2 1 x-22-y-12=1 y-1=x-2 y-1=-x-2 x-22-y-12=1 is the same as x2-4x+4-y2-2y+1=1 which is the same as x2-4x-y2+2y+4-1=1 which is the same as x2-4x-y2+2y+2=0 y x 2 1 x2-4x-y2+2y+2=0 y=x-1 y=-x+3

Scaling

Lines

y x 1 1 y=x y x 3 1 y=3x y3=x y x 1 2 y=x2 2y=x y x c 1 y=cx yc=x

Circles/Ellipses

y x 1 -1 1 -1 x2+y2=1 y x 3 -3 3 -3 x2+y2=9 y x 3 -3 1 -1 x32+y2=1 y x x2+y22=9 Whenx=0,y=±1 Wheny=0,x=±3 Effect: The x axis is stretched by 3. Whenx=0,y=±6 Wheny=0,x=±3 Effect: The y axis is stretched by 2. y x a -a b -b xa2+yb2=1 y x ra -ra rb -rb xra2+yrb2=1 x2a2+y2b2=r2 Whenx=0,y=±b Wheny=0,x=±a Effect: The x axis stretches by a and the y axis stretches by b

Parabolas

y x 1 1 -1 y=x2 y x -1 1 1 y2=x y x 1 -1 y3=x2 y x 1 x=y42 Whenx=1,y=3 Wheny=-1,x=-3 Effect: The y axis is stretched by 3 Whenx=1,y=±4 Effect: The y axis is stretched by 4 y x 1 3 -3 y=x32 y x -1 2 -2 y=-x22 y-1=x22 Effect: The x axis is stretched by 3 Effect: The y axis is stretched by -1 (i.e. flips over) The x axis is stretched by -2

Hyperbolas

y x 1 -1 x2-y2=1 y=x y=-x The Basic Hyperbola y x 1 -1 y2-x2=1 y=x y=-x The Other Basic Hyperbola Effect: The x axis and y axis switched. y x x32-y22=1 y2=x3 y2=-x3 Effect: The x axis is stretched by 3 and the y axis is stretched by 2 y x 1 -1 5 -5 y52-x2=1 y5=x y5=-x y x 1 -1 5 -5 x2-y52=1 y5=x y5=-x y x a -a b -b xa2-yb2=1 yb=xa yb=-xa Effect: The x axis is stretched by a and the y axis is stretched by b

Scaling and Shifting

Circles/Ellipses

y x 1 -1 1 -1 x2+y2=1 y x 4 -1 -2 -3 x-22+y+22=1 Subtracting 4 from x shifts right.Adding 2 to y shifts down. y x 3 -3 1 -1 x2+y32=1 Dividing y by 3 stretches the y axis y x 1 -1 -2 -3 -4 -5 1 2 3 4 5 x-42+y+232=1 Shifted and scaled! y x 1 -1 -2 -3 -4 -5 1 2 3 4 5 x2-8x-y29+4y9+1399=0 Is the same asx-42+y+232=1 y x k+b k k-b h-a h h+a h,k b a { { x-ha2+y-kb2=1 The basic circle except:center shifted to hkx axis stretched by ay axis stretched by b

Hyperbolas

y x 1 1 -1 x2-y2=1 y=x y=-x y x 3 4 5 1 -1 -2 -3 -4 -5 x-42-y+22=1 y+2=x-4 y+2=-x-4 Subtracting 4 from x shifts rightAdding 2 to y shifts down. y x 3 -3 1 -1 x2-y32=1 y3=x y3=-x Dividing by 3 on y stretches the y axis y x 1 -1 -2 -3 -4 -5 3 4 5 x-42-y+232=1 y+23=x-4 y+23=-x-4 y x 1 -1 -2 -3 -4 -5 3 4 5 x2-8x-y29-4y9+1319 y+23=x-4 y+23=-x-4 y x k+b k k-b h-a h h+a x-ha2-y-kb2=1 y-kb=x-ha y-kb=-x-ha x shifted right by h y shifted up by k x axis stretched by a y axis stretched by b

Finding the shifts

x-32=x2-6x+9 Note:3=62 x-42=x2-8x+16 4=82 x-52=x2-10x+25 5=102 x-402=x2-80x+1600 x-382=x2-76x+382 x-b22=x2-bx+b22 We can go backwards: x2-6x+31=x2-6x+9+31-9=x-32+22 x2-8x+15=x2-8x+16+15-16=x-42-1 x2-10x-3=x2-10x+25-3-25=x-52-28 x2-76x+18611=x2-76x+382+18611-382=x-382+17167 x2-bx+c=x2-bx+b22+c-b22=x-b22+c-b22 This procedure is called completing the square. Example:Graphy=x2-6x+2 y=x2-6x+2=x2-6x+9+2-9=x-32-7 So this is the same problem as graphing y+7=x-32 which is the basic parabola y=x2 except adding 7 to y shifts down by 7 and subtracting 3 from x shifts right by 3.

y x 3 -7 Soy=x2-6x+2is the same asy+7=x-32

Example: 9x2-72x+y2+4y+139=0 x2-8x+y2+4y+1399=0 x2-8x+16+y2+4y+49+1399-16-49=0 x-42+y+229+139-144-49=0 x-42+y+232+-99=0 x-42+y+232=1 So this is the same as the basic circle x2+y2=1 except the center is shifted to 4-2 and the y axis is stretched by 3. Example:ax2+bx+cy2+dy+e=0 Is the same asax2+bax+cy2+dcy=-e. ax2+bax+b2a2+cy2+dcy+d2c2=-e+ab2a2+cd2c2 ax+b2a2+cy+d2c2=-e+b24a+d24c x+b2a21a+y+d2c21c=b2c+d2a-4ace4ac x+b2a2b2c+d2a-4ace4a2c+y+d2c2b2c+d2a-4ace4ac2=1 x+b2ab2c+d2a-4ace4a2c2+y+d2cb2c+d2a-4ace4ac22=1 which is the basic circlex2+y2=1except the center is shifted to-b2a-d2c the x axis is stretched byb2c+d2a-4ace4a2c the y axis is stretched byb2c+d2a-4ace4ac2 It might help to compare this with exactly the same example whena=2b=12c=3d=30e=-3. So2x2+12x+3y2+30y-3=0,is the same as 2x2+6x+3y2+10y=0 2x2+6x+9+3y2+10y+25=3+2·9+3·25 2x+32+3y+52=3+18+75 x+3212+y+5213=96 x+32962+y+52963=1 x+32962+y+52963=1 x+39622+y+59632=1 x+3482+y+5322=1 which is the basic circlex2+y2=1except the center is shifted to-3-5 the x axis is stretched by48,and the y axis is stretched by32.

Notes and References

These notes are from MATH 272 Lectures 1 and 2 given by Arun Ram on Jan 25 2000, Jan 27 2000.

page history