Last updates: 12 December 2010
Let us make some shorter notations for the following matrices.
The Klein 4-group is the group of order
Set | Operation |
---|---|
|
Ordinary matrix multiplication |
The compete multiplication table for this group is as follows.
Multiplication table | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
HW: Show that this group, as definded above, is isomorphic to the direct product of a cyclic group of order two,
Center | Abelian | Conjugacy classes | Subgroups |
---|---|---|---|
|
Yes |
|
|
|
|
||
|
|
||
|
|
||
|
Element |
Order |
Centralizer |
Conjugacy Class |
---|---|---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Generators | Relations |
---|---|
|
|
|
|
|
Subgroups |
Structure | Order |
Index | Normal | Quotient group |
---|---|---|---|---|---|
|
|
|
|
Yes |
|
|
|
|
|
Yes |
|
|
|
|
|
Yes |
|
|
|
|
|
Yes |
|
|
|
|
|
Yes |
|
Subgroups |
Left Cosets | Right Cosets |
---|---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Subgroups |
Normalizer |
Centralizer |
---|---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Homomorphism | Kernel | Image |
---|---|---|
|
|
|
|
|
|
|
|
|
|
|
|
[CM] H. S. M. Coxeter and W. O. J. Moser, Generators and relations for discrete groups, Fourth edition. Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], 14. Springer-Verlag, Berlin-New York, 1980. MR0562913 (81a:20001)
[GW1] F. Goodman and H. Wenzl, The Temperly-Lieb algebra at roots of unity, Pacific J. Math. 161 (1993), 307-334. MR1242201 (95c:16020)