MATH 221 Lecture 16

Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville, VIC 3010 Australia
aram@unimelb.edu.au

Last update: 6 August 2012

Lecture 16

Example: Graph f(x) = x2-1 x3-4x

Notes:
(a) y = x2-1 x3-4x = (x+1) (x-1) x (x2-4) = (x+1) (x-1) x (x+2) (x-2)
(b) If x=1 then y=0.
(c) If x=-1 then y=0.
(d) If x=2+ then y. ( pos.pos pos.pos.pos )
(e) If x=2- then y-. ( pos.pos pos.pos.neg )
(f) If x=0+ then y. ( pos.neg pos.pos.neg )
(g) If x=0- then y-. ( pos.neg neg.pos.neg )
(h) If x=-2+ then y. ( neg.neg neg.pos.neg )
(i) If x=-2- then y-. ( neg.neg neg.neg.neg )
(j) y= x2-1 x3-4x is the same as (-y) = (-x) 2 -1 (-x) 3 - 4(-x)
So if we slip y to -y and x to -x the graph stays the same.
(k) If x then y0+.
(l) If x- then y0-.

x y -1 -2 1 2

Example: Graph x+y=1 .

Notes:
(a) If we switch x and y this graph stays the same.
(b) If x=0 then y=1, so y=12=1.
(c) If we switch y=0 then x=1.
(d) If x=y then x+x=1 and x=12,x=14.
(e) This graph should be similar to x2+y2=1 or x+y=1

x y 1 1 22 22 x2+y2=1 x y 1 1 12 12 x+y=1

x y 1 1 14 14 x+y=1

Example: Graph x2-1 x2+1 = f(x) .

Notes:
(a) y = x2-1 x2+1 = x2+1-2 x2+1 = 1- 2 x2+1

x y 1 y=1x2+1
Notes:
(a) If x=0, y= 1 02+1 = 11 = 1 .
(b) If x then y0+.
(c) If x- then y0+.
(d) This graph stays the same if we flip x to -x,
y = 1 x2+1 = 1 (-x)2+1

x y -2 y=-2x2+1 x y -1 1 y=1-2x2+1 = x2-1 x2+1

Example: Graph ln(4-x2) = f(x) .

Notes:
(a) y = ln(4-x2) = ln ( (2+x) (2-x) ) = ln(2+x) + ln(2-x) .
(b) If we flip x to -x the graph stays the same since y = ln(4-x2) = ln(4-(-x)2)

x y 1 y=lnx x y -1 y=ln(-x)

x y -2 1 -1 ln 3 ln 2 y=ln(x+2) x y -1 1 2 ln 3 ln 2 y=ln(2-x)

x y -2 2 1 -1 ln 3 2ln 2 ln 2
y = ln(4-x2) = ln(2+x) + ln(2-x) .

Example: Graph y = x23 (6-x) 13

Notes:
(a) If x=0 then y=0.
(b) If x=6 then y=0.
(c) If x then y x23 (-x) 13 = -x .
(b) If x- then y (y-xagain) .

x y -1 1 -1 1 y=x3 x y -1 1 -1 1 y=x13
y3=x

x y 1 -1 1 y=x23
=(x13)2
x y 1 -1 -1 1 y=x13

x y 1 -1 5 6 7 y=(6-x)13 6 x y y= x23 (6-x)13 y=-x

Example: Graph y=f(x) when x=cos2θ and y=cosθ .

Notes:
cos2θ = cos2θ-sin2θ = cos2θ - (1-cos2θ) = 2cos2θ-1

So this problem is really asking for the graph of cos2θ = cos22θ-1 when x=cos2θ and y=cosθ
i.e. x=2y2=1

x y 1 -1 1 y=x2 x y 1 1 -1 x=y2

x y 1 2 1 -1 x=2y2 x y 1 -1 1 -1 x=2y2-1

If x=2y2-1. Then x+1=2y2. So y2=x+12. So y=x+12. So f(x) = x+12

Notes and References

These are a typed copy of lecture notes given by Arun Ram on October 13, 2000.

page history