MATH 221 Lecture 2

MATH 221 Lecture 2

Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville, VIC 3010 Australia
aram@unimelb.edu.au

Last updated: 10 July 2012

Angles

y x 1 -1 1 -1 π is the distance half way around a circle of radius 1

Measure angles according to the distance traveled on a circle of radius 1.

y x 1 -1 1 -1 θ The angle θ is measured by travelling a distance θ on a circle of radius 1.

Sketch both x and y to get a circle of radius r.

y x r -r r -r 1 -1 distance rθ distance θ The distance θ stretches to rθ.

The distance 2π around a circle of radius 1 stretches to 2πr around a circle of radius r. So the circumference of a circle is 2πr if the circle is radius r.

To find the area of a circle first approximate with a polygon inscribed in the circle. The eight triangles form an octagon P8 in the circle. The area of the octagon P8 is almost the same as the area of the circle. Unwrap the octagon.

{ { b B h y x

The area of the octagon is the area of the 8 triangles. The area of each triangle is 12bh. So the area of the octagon is 12Bh.

Take the limit as the number of triangles in the interior polygon gets larger and larger (the polygon gets closer and closer to being the circle). Then

Area of the circle=limn(area of an n-sided polygon Pn) =limn(12Bh) =12(2πr)(r) =πr2

Where B is the total base, h is the height of the triangle, 2π is the length of an unwrapped circle and r is the radius of the circle.

So the area of a circle is πr2 if the circle is radius r.

Trigonometric functions

{ } } θ cosθ sinθ

sinθ is the y-coordinate of a point at distance θ on a circle of radius 1

cosθ is the x-coordinate of a point at distance θ on a circle of radius 1

tanθ=sinθcosθ, cotθ=cosθsinθ, secθ=1cosθ, cscθ=1sinθ

Since the equation of a circle of radius 1 is x2+y2=1 this forces sin2θ+cos2θ=1.

The pictures

y x } θ cosθ sinθ and y x } -θ -cosθ -sinθ

show that

sin(-θ)=-sinθandcos(-θ)=cosθ

Also

y x -1 1 and y x } π2 -1 1

show that

sin0=0andsinπ2=1 cos0=1cosπ2=0

Draw the graphs

y=sinθ

y θ -2π -3π2 -π -π2 π2 π 3π2 2π 1 -1

y=cosθ

y θ -2π -3π2 -π -π2 π2 π 3π2 2π 1 -1

by seeing how the x and y coordinates change as you walk around the circle.

Example: Verify secBcosB-tanBcotB=1

secBcosB-tanBcotB=1cosBcosB-sinBcosBcosBsinB=1cos2B-sin2Bcos2B =1-sin2Bcos2B=cos2Bcos2B =1

Example: Verify cotα-cotβ=sin(β-α)sinαsinβ

Left hand side=cotα-cotβ=cosαsinα-cosβsinβ =cosαsinβ-cosβsinαsinαsinβ Right hand side=sin(β-α)sinαsinβ=sinβcos(-α)+cosβsin(-α)sinαsinβ =sinβcosα+cosβ(-sinα)sinαsinβ=sinβcosα-cosβsinαsinαsinβ

So

Left hand side=Right hand side

Example: Verify tanA-sinAsecA=sin3A1+cosA

tanA-sinAsecA=?sin3A1+cosA So(1+cosA)(tanA-sinA)=?sin3AsecA SotanA+cosAtanA-sinA-sinAcosA=?sin3AsecA SosinAcosA+cosAsinAcosA-sinA-sinAcosA     =?sin3A1cosA SosinAcosA+sinA-sinA-sinAcosA=?sin3AcosA SosinA-sinAcos2AcosA=?sin3AcosA SosinA-sinAcos2A=?sin3A So1-cos2A=?sin2A

References

[Ram] A. Ram, MATH 221 Lecture 2, September 8, 2000, University of Wisconsin.

page history