Geometry of Type C2

Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville, VIC 3010 Australia
aram@unimelb.edu.au

Last update: 16 March 2013

Geometry of Type C2

Let

J= [ 0010 0001 -1000 0-100 ] .

Then we define the symplectic group

SP4= { MGLn() MTJM =J } .

If we write M=[ABCD], then the condition MTJM=J yields BTD-DTB =0 =ATC-CTA, and ATD-CTB =I =DTA-BTC. Although it is not immediately obvious, SP4SL4.

Let G=SP4() and 𝔤=𝔰𝔭4. Each root space 𝔤α in 𝔤 is 1-dimensional, and we choose distinguished vectors eα in each one.

eα1 = [ 0000 1000 000-1 0000 ] eα2 = [ 0010 0000 0000 0000 ] eα1+α2 = [ 0001 0010 0000 0000 ] e2α1+α2 = [ 0000 0001 0000 0000 ] e-α1 = [ 0100 0000 0000 00-10 ] e-α2 = [ 0000 0000 1000 0000 ] e-α1-α2 = [ 0000 0000 0100 1000 ] e-2α1-α2 = [ 0000 0000 0000 0100 ]

Let Gss be the set of semisimple elements of G and let 𝒩 be the set of nilpotent elements of 𝔤. Then G acts on the set

Λ= { (s,n) sGss,n 𝒩qs } ,where 𝒩qs= { n𝒩 Ads(n)= q2n } ,

by

g·(s,n)= ( gsg-1, Adg(n) ) .

For αR, let eα be a non-zero element in the α root space of 𝔤. Let DG be the subgroup of diagonal matrices in G. Then

ϕ:T D t st= [ t(Xω2-ω1) 0 0 0 0 t(Xω1) 0 0 0 0 t(Xω1-ω2) 0 0 0 0 t(X-ω1) ] t(Xω1) = d2 t(Xω2) = d1d2 [ d1000 0d200 00d1-10 000d2-1 ] ,

is a bijection satisfying

Adst·eα= t(Xα)eα

for αR. Since W0=N(D)/D, W0 acts on D, and two diagonal elements s and s are in the same G-orbit if and only if they are in the same W0-orbit. The map ϕ is W0-equivariant, giving a bijection

θ: {W0-orbits onT} {G-orbits onGss} t st. (3.9)

The weight tz,w,i satisfies t(Xα1)=z and t(Xα2)=w, for i=1 or 2, and z,w×. Then define

dα1(z)= stz,1,1 anddα2(z) =st1,z,1,

for z, so that

dαi(z)· eαi=z eαiand dαi(z)· eαj=eαj,

for i,j=1,2 and ij. (We could have used tz,1,2 and tz,1,2 in our definitions or dαi(z), but all that matters is to have some elements of D that satisfy 3.4.)

We begin by choosing a set of representatives for the orbits in Λ/G for all values of q. After this, we give the bijection between Λ/G and the irreducible H-modules.

Theorem 3.19. If q2 is not a primitive th root of unity with 4 then the following is a set of representatives of the orbits in Λ/G.

( ± [ 1000 0100 0010 0001 ] ,0 ) , ( [ -1000 0100 00-10 0001 ] ,0 ) , ( ± [ z1/2000 0z1/200 00z-1/20 000z-1/2 ] ,0 ) ,z1,q±2, ( ± [ q000 0q00 00q-10 000q-1 ] ,0 ) , ( ± [ q000 0q00 00q-10 000q-1 ] ,eα2 ) , ( ± [ q000 0q00 00q-10 000q-1 ] ,eα1+α2 ) , ( ± [ 1000 0q200 0010 000q-2 ] ,0 ) , ( ± [ 1000 0q200 0010 000q-2 ] ,eα1 ) , ( ± [ 1000 0q00 0010 000q-1 ] ,0 ) , ( ± [ 1000 0q00 0010 000q-1 ] ,e2α1+α2 ) , ( ± [ 1000 0-q00 0010 000-q-1 ] ,0 ) , ( ± [ 1000 0-q00 0010 000-q-1 ] ,e2α1+α2 ) , ( ± [ 1000 0z00 0010 000z ] ,0 ) ,z±1,± q±1, q±2, ( ± [ q000 0q300 00q-10 000q-3 ] ,0 ) , ( ± [ q000 0q300 00q-10 000q-3 ] ,eα1 ) , ( ± [ q000 0q300 00q-10 000q-3 ] ,eα2 ) , ( ± [ q000 0q300 00q-10 000q-3 ] ,eα1+ eα2 ) , ( ± [ z1/2000 0q2z1/200 00z-1/20 000q-2z-1/2 ] ,0 ) ,z1,q±2, q-4,q-6, ( ± [ z1/2000 0q2z1/200 00z-1/20 000q-2z-1/2 ] ,eα1 ) ,z1,q±2, q-4,q-6, ( [ -q000 0q00 00-q-10 000q-1 ] ,0 ) , ( [ -q000 0q00 00-q-10 000q-1 ] ,eα2 ) , ( [ -q000 0q00 00-q-10 000q-1 ] ,e2α1+α2 ) , ( [ -q000 0q00 00-q-10 000q-1 ] ,e2+ e2α1+α2 ) , ( ± [ q000 0zq00 00q-10 000z-1q-1 ] ,0 ) , z±1,q±2 ,q-4,-q-2, ( ± [ q000 0zq00 00q-10 000z-1q-1 ] ,eα2 ) , z±1,q±2 ,q-4,-q-2, ( ± [ w1/2000 0zw1/200 00w-1/20 000z-1w-1/2 ] ,0 ) ,tz,w generic,z-1,

and

( [ w1/2000 0-w1/200 00w-1/20 000-w-1/2 ] ,0 ) ,t-1,w generic.

Proof.

Given an element (s,n)Λ, by 3.9, there is an element (s,n) in the G-orbit of (s,n) such that s is diagonal and that s=st for some tz,w such that tz,w is in the set of W0-orbit representatives listed in (2.6). Then by Lemma 3.9, it is sufficient to describe the CG(st)-orbits in 𝔤qs for a set of representatives of possible central characters t. Also, Theorem 3.6 shows that 𝔤qs is spanned by {eαt(Xα)=q2}.

Case 1: t1,1, t-1,1, t1,z, tz,1, tz,w

For the semisimples corresponding to t1,1, t-1,1, t1,z, tz,1, tz,w, 𝔤qs=0, so that 0 is the only nilpotent that can be paired with s. Note that if tQ takes the form t-1,w, then -st=ss1t, so that these characters are in the same W0-orbit. Hence only one pair (st,0) is listed, and it listed separately from the other pairs involving tz,1 or tz,w.

Case 2: t±q,1, tq2,z, tz,q2

For the weights tq2,1, t±q,1, tq2,z, tz,q2, P(t)=1, so that 𝔤qs is 1-dimensional. Let aeα𝔤qst with a×. Then

dα(a-1)· (st,aeα)= (st,eα).

Then all the elements (s,n)Λ with s=st are G-conjugate to (st,0) or (st,eα). Note that ±st-1,q2 are in the same W0 orbit, so the ± is deleted from these semisimples in the listing above.

Case 3: st for tq2,1

If s=stq2,1, then 𝔤qs= eα1+ eα1+α2, and CG(s) is generated by D and x±α2(c) for c×. Let aeα1+b eα1+α2 𝔤qs. If a,b× then

xα2(-b/a) dα1(a)· eα1=aeα1 +beα2,

so that aeα1+beα2 is CG(s)-conjugate to eα1. If a=0 then

xα1(b) x-α1 (-1/b)·b eα1+α2= eα1,

and if b=0 then

dα1(a-1) ·aeα1=eα1.

Then every element (s,n)Λ with s=st is conjugate to (st,0) or (st,eα1).

Case 4: tq2,q2

If t=tq2,q2 then 𝔤qst=eα1+eα2. If ab0 then

dα1(a-1) dα2(b-1)· ( st,aeα1+ beα2 ) =(st,eα1+eα2), dα1(a-1) ·(st,aeα1) =(st,eα1), and dα2(b-1) ·(st,beα2) =(st,eα2).

Hence every pair (st,n) with n0 is conjugate to one of these three elements of Λ, but since

CG(s)= { ±dα1(c) dα2(d) c,d × } ,

none of these three elements are conjugate to each other. Thus (st,0), (st,eα1), (st,eα2), and (st,eα1+eα2) are the representatives of the orbits of elements of Λ with s=st.

Case 5: t-1,q2

If t=t-1,q2 then 𝔤qst= eα2+ e2α1+α2. If ab0 then

dα2(a-1) dα1(b-1a) · ( st,aeα2+b e2α1+α2 ) = ( st,eα2+ e2α1+α2 ) , dα2(a-1)· (st,aeα2)= (st,eα2),and dα2(b-1)· ( st,b e2α1+α2 ) = (st,e2α1+α2).

Hence every pair (st,n) with n0 is conjugate to one of these three elements of Λ. Since CG(st) consists of exactly the diagonal matrices, the CG(st)-orbit of n𝔤qs is n. Thus (st,0), (st,eα1), (st,eα2), and (st,eα1+eα2) are representatives of the orbits of elements of Λ with s=st. Since ±st-1,q2 are in the same orbit, the ± is deleted from the pairs involving this semisimple above.

Case 6: t1,q2

If t=t1,q2, then

𝔤qst=eα2 +eα1+α2+ e2α1+α2.

and

CG(st)= xα1(c), ±dα1(a), ±dα2(b) a,b,c × .

Let feα2+g eα1+α2+ he2α1+α2 𝒩qs with f,g,h. If gf=0 then

x-α1(d)·h e2α1+α2=h d2eα2+hd eα1+α2+h e2α1+α2,

so we assume gf0.

If fh=g2 then

xα1 (-ggd+f) x-α1(d)· ( feα2+g eα1+α2 +he2α1+α2 ) =(f+2gd+hd2) eα2.

If fhg2 then

xα1 ( -h 2g2-fh ) x-α1 ( -g+g2-hf h ) · ( feα2+g eα1+α2+h e2α1+α2 ) =(g2-hf) eα1+α2.

But

dα2 ( (f+2gd+hd2) -1 ) ·(f+2gd+hd2) eα2=eα2and dα2 ( (g2-hf) -1 ) ·(g2-hf) eα1+α2= eα1+α2.

Thus the elements (s,n) in Λ with s=st are represented by (st,0), (st,eα2), and (st,eα1+α2).

Theorem 3.20. If q2 is a primitive 4th root of unity then the following is a set of representatives of the orbits in Λ/G.

( ± [ 1000 0100 0010 0001 ] ,0 ) , ( [ -1000 0100 00-10 0001 ] ,0 ) , ( ± [ z1/2000 0z1/200 00z-1/20 000z-1/2 ] ,0 ) ,z1,q±2, ( ± [ q000 0q00 00q-10 000q-1 ] ,0 ) , ( ± [ q000 0q00 00q-10 000q-1 ] ,eα2 ) , ( ± [ q000 0q00 00q-10 000q-1 ] ,eα1+α2 ) , ( ± [ 1000 0q200 0010 000q-2 ] ,0 ) , ( ± [ 1000 0q200 0010 000q-2 ] ,eα1 ) , ( ± [ 1000 0q00 0010 000q-1 ] ,0 ) , ( ± [ 1000 0q00 0010 000q-1 ] ,e2α1+α2 ) , ( ± [ 1000 0-q00 0010 000-q-1 ] ,0 ) , ( ± [ 1000 0-q00 0010 000-q-1 ] ,e2α1+α2 ) , ( ± [ 1000 0z00 0010 000z ] , 0 ) , z±1,± q±1, q±2, ( [ q000 0q300 00q-10 000q-3 ] ,0 ) , ( [ q000 0q300 00q-10 000q-3 ] ,eα1 ) , ( [ q000 0q300 00q-10 000q-3 ] ,eα2 ) , ( [ q000 0q300 00q-10 000q-3 ] ,eα1+eα2 ) , ( [ q-3000 0q00 00q30 000q-1 ] ,eα2+ e2α1+α2 ) , ( [ q-3000 0q-100 00q30 000q ] ,eα1+eα2 ) , ( ± [ z1/2000 0q2z1/200 00z-1/20 000q-2z-1/2 ] ,0 ) ,z±1, q±2, q-4, q-6, ( ± [ z1/2000 0q2z1/200 00z-1/20 000q-2z-1/2 ] ,eα1 ) ,z±1, q±2, q-4, q-6, ( ± [ q000 0zq00 00q-10 000z-1q-1 ] ,0 ) ,z±1, q±2, q-4,- q-2, ( ± [ q000 0zq00 00q-10 000z-1q-1 ] ,eα2 ) ,z±1, q±2, q-4,- q-2, ( ± [ w1/2000 0zw1/200 00w-1/20 000z-1w-1/2 ] ,0 ) ,tz,wgeneric, z-1,

and

( ± [ w1/2000 0-w1/200 00w-1/20 000-w-1/2 ] ,0 ) ,tz,wgeneric.

Proof.

The proof of Theorem 3.19 applies to this case as well, with changes only necessary in Case 4 and for the semisimple st-1,q2. Since t-1,q2 is in the same W0-orbit as tq2,q2, st-1,q2 is in the same G-orbit as stq2,q2 and thus st-1,q2 is omitted from the list. Also, the two weights t with tQ=tq2,q2 are in the same W0-orbit, and thus the ± is omitted in the list of representatives.

Case 4: tq2,q2

If t=tq2,q2 then 𝔤qst= eα1+eα2 +e-2α1-α2.

If abc0 then aeα1+ beα2+ ce-2α1-α2 is not nilpotent, since its minimal polynomial in the standard representation is x4+a2bc.

Then

dα1(a-1) dα2(a2b-1) · ( st,aeα1+b e-2α1-α2 ) = ( st,eα1+ eα2 ) , dα1 ((ab)-1/2) dα2(b-1)· ( st,a e-2α1-α2 +beα2 ) = ( st, e-2α1-α2 +eα2 ) , dα1(a-1) dα2(b-1)· ( st,aeα1 +beα2 ) = (st,eα1+eα2), dα2(a-1)· (st,ae-2α1-α2) =(st,e-2α1-α2) ,and dα1(a-1)· (st,aeα1)= (st,eα1),and dα2(b-1)· (st,beα2)= (st,eα2).

Hence every pair (st,n) with n0 is conjugate to one of these six elements of Λ, but since

CG(s)= { ±dα1(c) dα2(d) c,d× } ,

none of these elements are conjugate to each other. Thus the pairs (st,0), (st,eα1), (st,eα2), (st,e-2α1-α2), (st,e-2α1-α2+eα2), (st,eα1+eα2) and (st,eα1+e-2α1-α2) are representatives of the orbits of elements of Λ with s=st.

However, later calculations are made easier by choosing nilpotent elements in 𝒩+ as representatives. Then we note:

w2w1· (st,e-2α1-α2) =(sw2w1t,eα2), w2w1· (st,e-2α1-α2+eα2) =(sw2w1t,eα2+e2α1+α2),

and

w2w1w2· ( st,eα1+ e-2α1-α2 ) = ( sw1w2w1t, eα1+eα2 ) .

These are the representatives listed above.

Theorem 3.21. If q2 is a primitive third root of unity then the following is a set of representatives of the orbits in Λ/G.

( ± [ 1000 0100 0010 0001 ] , 0 ) , ( [ -1000 0100 00-10 0001 ] , 0 ) , ( ± [ z1/2000 0z1/200 00z-1/20 000z-1/2 ] , 0 ) , z1,q±2, ( ± [ q000 0q00 00q-10 000q-1 ] , 0 ) , ( ± [ q000 0q00 00q-10 000q-1 ] , eα2 ) , ( ± [ q000 0q00 00q-10 000q-1 ] , eα1+α2 ) , ( ± [ 1000 0q200 0010 000q-2 ] , 0 ) , ( ± [ 1000 0q200 0010 000q-2 ] , eα1 ) , ( ± [ q2000 0100 00q-20 0001 ] , eα2 ) , ( ± [ q-2000 0100 00q20 0001 ] , eα1+eα2 ) , ( ± [ 1000 0q00 0010 000q-1 ] , 0 ) , ( ± [ 1000 0q00 0010 000q-1 ] , e2α1+α2 ) , ( ± [ 1000 0z00 0010 000z-1 ] , 0 ) , z±1, q±1, q±2, ( ± [ z1/2000 0q2z1/200 00z-1/20 000q-2z-1/2 ] , 0 ) , z1, q±2, q-4, q-6, ( ± [ z1/2000 0q2z1/200 00z-1/20 000q-2z-1/2 ] , eα1 ) , z1, q±2, q-4, q-6, ( [ -q000 0q00 00-q-10 000q-1 ] , 0 ) , ( [ -q000 0q00 00-q-10 000q-1 ] , eα2 ) , ( [ -q000 0q00 00-q-10 000q-1 ] , e2α1+α2 ) , ( [ -q000 0q00 00-q-10 000q-1 ] , eα2+ e2α1+α2 ) , ( ± [ q000 0zq00 00q-10 000z-1q-1 ] , 0 ) , z±1, q±2, q-4, -q-2, ( ± [ q000 0zq00 00q-10 000z-1q-1 ] , eα2 ) , z±1, q±2, q-4, -q-2, ( ± [ w1/2000 0zw1/200 00w-1/20 000z-1w-1/2 ] , 0 ) , tz,wgeneric, z-1, ( ± [ w1/2000 0-w1/200 00w-1/20 000-w-1/2 ] , 0 ) , tz,wgeneric.

Proof.

The proof of Theorem 3.19 applies, with changes only necessary in cases 3 and 4, and omitting the characters t-q,1 and tq2,q2 (Case 4), since these characters are in the same orbits as tq2,1 and t1,q2, respectively.

Case 3: st for tq2,1

If s=stq2,1 then 𝔤qs is spanned by eα1,eα1+α2, and e-2α1-α2, while CG(s) is generated by D and x±α2(c) for c×. In particular, CG(s) contains w2(t)=xα2(t) x-α2(-t-1) xα2(t), a representative of s2W0 in N(T)/T.

Let n=weα1+x eα1+α2+y e-2α1-α2 𝔤qs, which is nilpotent. Since dα2(y)· ( weα1+ xeα1+α2+ ye-2α1-α2 ) =weα1+x eα1+α2+ e-2α1-α2, we assume that y=0 or 1.

If y=0, then case 3 in the proof of Theorem 3.19 shows that either n=0 or n is CG(s)-conjugate to eα1. Next assume y=1. If w,x× then

dα2(w) dα1(w-1) xα2(x/w)· weα1+x eα1+α2+ e-2α2-α1= eα1+ e-2α1-α2.

If w=0 then

xα1(x) x-α1(-1/x)· xeα1+α2+ e-2α1-α2= eα1+ e-2α1-α2,

and if x=0 then

dα1(w-1)· weα1+ e-2α1-α2= eα1+ e-2α1-α2.

Then every element (s,n)Λ with s=st is conjugate to (st,0), (st,eα1), (st,e-2α1-α2), or (st,eα1+e-2α1-α2).

Later calculations are made easier if we choose representatives of n in 𝒩+. So we note:

w2w1· (st,e-2α1-α2) =(sw2w1t,eα2),

and

w2w1w2· (st,eα1+e-2α1-α2)= (sw2w1w2t,eα1+eα2).

These are the representatives listed above.

Theorem 3.22. If q2=-1 then the following is a set of representatives of the orbits in Λ/G.

( ± [ 1000 0100 0010 0001 ] , 0 ) , ( ± [ z1/2000 0z1/200 00z-1/20 000z-1/2 ] , 0 ) , z1,q±2 ( [ q000 0q00 00q-10 000q-1 ] , 0 ) , ( [ q000 0q00 00q-10 000q-1 ] , eα2 ) , ( [ q-1000 0q-100 00q0 000q ] , eα2 ) , ( [ q000 0q00 00q-10 000q-1 ] , eα1+α2 ) , ( [ q-1000 0q-100 00q0 000q ] , eα1+α2 ) , ( [ q000 0q-100 00q-10 000q ] , eα2+eα1 ) , ( [ q000 0q-100 00q-10 000q ] , e2α1+α2+ eα2 ) , ( [ q-1000 0q00 00q0 000q-1 ] , eα1+eα2 ) , ( [ 1000 0q200 0010 000q-2 ] , 0 ) , ( [ 1000 0q200 0010 000q-2 ] , eα1 ) , ( ± [ 1000 0q00 0010 000q-1 ] , 0 ) , ( ± [ 1000 0q00 0010 000q-1 ] , e2α1+α2 ) , ( ± [ 1000 0q-100 0010 000q ] , e2α1+α2 ) , ( ± [ 1000 0z00 0010 000z ] , 0 ) ,z1, q±1,q±2, ( [ z1/2000 0q2z1/200 00z-1/20 000q-2z-1/2 ] , 0 ) , z1, q±2, q-4, q-6, ( [ z1/2000 0q2z1/200 00z-1/20 000q-2z-1/2 ] , eα1 ) , z1, q±2, q-4, q-6, ( [ q2z1/2000 0z1/200 00q-2z-1/20 000z-1/2 ] , eα1 ) , z1, q±2, q-4, q-6, ( ± [ q000 0zq00 00q-10 000z-1q-1 ] , 0 ) , z±1, q±2, q-4, -q-2, ( ± [ q000 0zq00 00q-10 000z-1q-1 ] , eα2 ) , z±1, q±2, q-4, -q-2, ( ± [ q-1000 0zq00 00q0 000z-1q-1 ] , eα2 ) , z±1, q±2, q-4, -q-2, ( ± [ w1/2000 0zw1/200 00w-1/20 000z-1w-1/2 ] , 0 ) , tz,wgeneric, z-1,

and

( ± [ w1/2000 0-w1/200 00w-1/20 000-w-1/2 ] , 0 ) , t-1,wgeneric.

Proof.

The proof of Theorem 3.19 applies to this case as well, with essential changes only necessary in Cases 2, 3 and 4 and for the semisimple stq2,q2. Case 1 now covers the central characters t1,1, t1,z, tz,1, and tz,w. Since tq2,q2 is in the same W0-orbit as tq2,1, stq2,q2 is in the same G-orbit as stq2,1 and thus stq2,q2 (Case 4) is omitted from the list.

Case 2: st for tq2,z, tz,q2, or t±q,1

Since P(t)={±β}, where β is α1,α2, or 2α1+α2, 𝔤qs is spanned by e±β. However, aeβ+be-β is nilpotent exactly when ab=0. Since CG(st)=D, and

dαi(c)· e±β=±c β,ωi e±β,

every element of 𝒩sq is CG(st)-conjugate to either eβ or e-β.

Case 3: st for tq2,1

If s=stq2,1 then 𝔤qs is spanned by e±α1 and e±(α1+α2). And CG(s) is generated by D, x±α2(c) and x±(2α1+α2) for c×. In particular, CG(s) contains representatives of s2 and s1s2s1, and thus of s2s1s2s1 as well.

Let n=feα1+g eα1+α2+h e-α1+j e-α1-α2 𝔤qs. Then n is nilpotent exactly if hf+gj=0, since its minimal polynomial in the standard representation of 𝔤 is x2-(hf+gj).

By applying the argument in case 3 of Theorem 3.19, n is CG(s) conjugate to an element of 𝔤qs with its positive part equal to either eα1 or 0. Thus we may assume g=0. Then if n is nilpotent, hf=0 as well.

If g=h=0 but fj0, then

x-(2α1+α2) (1)x2α1+α2 (-fj-1)·f eα1+je-α1-α2 =-jeα1.

If f=g=0 but hj0, then

s2s1s2s1· he-α1+j e-α1-α2= heα1+j eα1+α2,

which is in the same CG(s)-orbit as heα1.

If exactly one of f,h,j is non-zero, then n=aeβ for some β{±α1,±(α1+α2)}. But the roots ±α1 and ±(α1+α2) are in the same orbit under the action of s2 and s1s2s1. Hence, n is conjugate to aeα1, where a is equal to the non-zero coefficient of n.

Finally,

dα1(f-1) ·feα1=eα1.

Thus every element of 𝒩sq is in the same CG(s)-orbit as either eα1 or 0.

Case 4: st for t1,q2

If s=st1,q2 then 𝔤qs is spanned by e±α2, e±(α1+α2), and e±(2α1+α2), while CG(s) is generated by D and x±α1(c).

By the argument in case 4 of theorem 3.19, if n0 is in the span of eα2, eα1+α2, and e2α1+α2, then n is CG(s)-conjugate to either eα2 or eα1+α2. We also note that

CG(s)· eα2, eα1+α2, e2α1+α2 eα2, eα1+α2, e2α1+α2 ,

since CG(s) is the same as in the generic case.

A similar argument using x-α1(c) in place of xα1(c) shows that if n0 is in the span of e-α2, e-(α1+α2), and e-(2α1+α2), then n is CG(s)-conjugate to either e-α2 or e-(α1+α2).

We now examine the general case. Let n =feα2 +geα1+α2 +he2α1+α2 +je-α2 +ke-α1-α2 +le-2α1-α2. Assume that not all of f,g,h are zero and not all of j,k,l are zero, or else we are in one of the cases above. As noted above, feα2 +geα1+α2 +he2α1+α2 is CG(s)-conjugate to either eα2 or eα1+α2. Let x· ( feα2 +geα1+α2 +he2α1+α2 ) =eα2 or eα1+α2, for some xCG(s).

Then because the positive and negative parts of 𝔤qs are fixed by the action of CG(s),

x·n=eα2+ je-α2+k e-α1-α2+l e-2α1-α2

or

x·n=eα1+α2 je-α2+k e-α1-α2+l e-2α1-α2.

Thus we can assume f=1 and g=h=0, or g=1 and f=h=0.

Case 1: f=1,g=h=0

If n =eα2 +je-α2 +ke-α1-α2 +le-2α1-α2, then the minimal polynomial of n in the defining representation of 𝔰𝔭4 is x4-jx2. Hence if n is nilpotent, j=0. Then if k0,

dα1(k) x-αl/(2k) · ( eα2+k e-α1-α2+l e-2α1-α2 ) =eα2+ e-α1-α2.

If k=0, then

dα1(l)· eα2+l e-2α1-α2= eα2+ e-2α1-α2.

Case 2: g=1,f=h=0

If n =eα1+α2 +je-α2 +ke-α1-α2 +le-2α1-α2, then the minimal polynomial of n in the defining representation of 𝔰𝔭4 is x4-2k+k2-jl. Hence if n is nilpotent, k=0 and either j or l is zero.

If j=0, then

w1· ( eα1+α2+l e-2α1-α2 ) =eα1+α2+ le-α2.

Then

dα2(j) dα1(j-1)· ( eα1+α2+ je-α2 ) =eα1+α2+ e-α2.

Thus, n is in the CG(s) orbit of either 0, eα2, eα1+α2, e-α2, e-α1-α2, eα2+e-α1-α2, eα2+e-2α1-α2, or eα1+α2+e-α2.

Future computations will be easier if we choose orbit representatives (s,n) with n𝒩+. Then we note:

w0· (st,e-α2) = ( sw0t, eα2 ) , w0· (st,e-α1-α2) = ( sw0t, eα1+α2 ) , w1w2w1· ( st,eα2+ e-α1-α2 ) = ( sw1w2w1t, eα2+eα1 ) , w1w2w1· ( st,eα2+ e-2α1-α2 ) = ( sw1w2W1t, eα2+e2α1+α2 ) ,

and

w2· ( st,eα1+α2 +e-α2 ) = ( sw2t, eα1+eα2 ) .

These are the orbit representatives listed above.

Theorem 3.23. If q=-1 then the following is a set of representatives of the orbits in Λ/G.

( ± [ 1000 0100 0010 0001 ] , 0 ) , ( ± [ 1000 0100 0010 0001 ] , eα1 ) , ( ± [ 1000 0100 0010 0001 ] ,eα2 ) , ( ± [ 1000 0100 0010 0001 ] , eα1+eα2 ) , ( ± [ z1/2000 0z1/200 00z-1/20 000z-1/2 ] , 0 ) , z±1,q±2 ( ± [ z1/2000 0z1/200 00z-1/20 000z-1/2 ] , eα1 ) , z±1,q±2 ( [ 1000 0-100 0010 000-1 ] , 0 ) , ( [ 1000 0-100 0010 000-1 ] , e2α1+α2 ) , ( ± [ 1000 0-100 0010 000-1 ] , eα2+ e2α1+α2 ) , ( ± [ 1000 0z00 0010 000z ] , 0 ) , z±1, ( ± [ 1000 0z00 0010 000z ] , eα2 ) , z±1,

and

( ± [ w1/2000 0zw1/200 00w-1/20 000z-1w-1/2 ] , 0 ) ,tz,wgeneric.

Proof.

By (3.9) and the classification of central characters given in 2.4.1, the semisimple elements listed above are a set of representatives of the semisimple orbits in G. Then it suffices to show that the nilpotent elements paired with each st are a set of representatives of the CG(s)-orbits in 𝒩qst For tT,

st=±dα1 (t(Xα1)) dα2 (t(Xα2)).

The centralizer of st in G is generated by { x±α(c) c× ,t(Xα)=1 } and D.

Case 1: t1,1

Since st1,1 is central, CG(st)=G and 𝒩sq=𝒩. Hence the nilpotent CG(s)-orbits in 𝒩sq are the nilpotent orbits in 𝔤. These are represented by 0, eα1, eα2, and eα1+eα2.

Case 2: t1,z and tz,1

If s=st1,z or stz,1, then P(t)={eαi}, where i=1 or 2, respectively. In these cases, CG(s) is generated by D and x±αi(c), for c×. In particular, CG(s) contains a representative of wiW0.

However, aeαi+be-αi is nilpotent exactly if ab=0. If a=0, then

wi·be-αi =beαi,

so we assume that n=aeαi.

Then

dαi(a-1) ·aeαi=eαi,

so that every non-zero element of 𝒩qs is CG(s)-conjugate to eαi.

Case 3: tq,1

If s=stq,1, then P(t)={α1,2α1+α2} and 𝔤qs is spanned by e±(2α1+α2) and e±α2. Also, CG(s) is generated by D and x±α2(c) and x±(2α1+α2)(c) for c×. In particular, CG(s) contains a representative of w2 and w1w2w1.

However, aeα2 +be-α2 +ce2α1+α2 +de-2α1-α2 is nilpotent exactly if ab=0 and cd=0. However,

w2· ( be-α2+ ce2α1+α2+ de-2α1-α2 ) =beα2+c e2α1+α2+ de-2α1-α2,

and

w1w2w1· ( aeα2+be-α2 +de-2α1-α2 ) =aeα2+be-α2 +de2α1+α2,

so we can assume n=aeα2+ce2α1+α2. Then if ac0,

dα1(a/c) dα2(a-1)· ( aeα2+c e2α1+α2 ) =eα2+ e2α1+α2.

If a=0 but c0, then

dα2(c-1)· ce2α1+α2= e2α1+α2.

if c=0 but a0 then

dα2(a-1)· aeα2=eα2.

Hence n is in the CG(s)-orbit of either 0, eα2, or eα2+e2α1+α2.

Case 4: tz,w

If t=tz,w, then P(t)=, and 𝒩qs=0.

Cosets

The irreducible H-modules can also be constructed as the Borel-Moore homology of generalized Springer fibers. If s is a semisimple element of G and n𝔤qs, then (s,n) is the set of Borel subalgebras fixed by s and containing n. Identifying G/B with shows that (s,n) is the set of B-cosets in G fixed by the action of s and exp(n). Thus, it is necessary to compute this action of G on cosets in G/B.

The group G is generated by:

Hα(c)=wα (c)wα(-1) andxα(c) =exp(ceα), forαR,

with some added relations (see [Ste1967]).

The first relations are commutator relations between the xα(c).

xα1(c) xα2(d) = xα2(d) xα1(c) xα1+α2(cd) x2α1+α2(-c2d) xα1(c) xα1+α2(d) = xα1+α2(d) xα1(c) x2α1+α2(2cd) xα1(c) x2α1+α2(d) = x2α1+α2(d) xα1(c) xα1(c) x-α2(d) = x-α2(d) xα1(c) xα1(c) x-α1-α2(d) = x-α1-α2(d) xα1(c) x-α2(-2cd) xα1(c) x-2α1-α2(d) = x-2α1-α2(d) xα1(c) x-α1-α2(-cd) x-α2(-c2d) x-α1(c) xα1(d) = x-α1(c) xα1(-c-1) xα1(d+c-1) = xα1(c-1) w1 xα1(d+c-1) xα2(c) xα1+α2(d) = xα1+α2(d) xα2(c) xα2(c) x2α1+α2(d) = x2α1+α2(d) xα2(c) xα2(c) x-α1-α2(d) = x-α1-α2(d) xα2(c) x-α1(cd) x-2α1-α2 (-d2c) xα2(c) x-2α1-α2(d) = x-2α1-α2(d) xα2(c) x-α2(c) xα2(d) = x-α2(c) xα2(-c-1) xα2(d+c-1) = xα2(c-1) w2 xα2(d+c-1)

The next relations describe how the Weyl group interacts with the xα(c).

w1 xα(c) w1-1 = xs1(α)(-c) ifα=± (α1+α2)or ±α1. w1xα(c) w1-1 =xs1(α)(c) ifα=±α2 or±(2α1+α2). w1 x±(α1+α2) (c)w1-1= x±(α1+α2) (c). w2xα(c) w2-1= xs2(α) (-c)ifα= ±α1or±α2. w2xα(c) w2-1= xs2(α) (c)ifα=± (α1+α2) or±(2α1+α2).

Explicitly, G is generated by

xα1(c)= [ 1000 c100 001-c 0001 ] xα2(c)= [ 10c0 0100 0010 0001 ] , xα1+α2(c)= [ 100c 01c0 0010 0001 ] x2α1+α2(c)= [ 1000 010c 0010 0001 ] , x-α1(c)= [ 1c00 0100 0010 00-c1 ] x-α2(c)= [ 1000 0100 c010 0001 ] ,and xα1+α2(c)= [ 1000 0100 0c10 c001 ] x2α1+α2(c)= [ 1000 0100 0010 0c01 ] .

The Varieties s

We use Theorem 3.8 to determine the varieties s for semisimple elements sD. The following semisimple elements are defined only up to an element of Z(G), but this does not affect s.

First,

st1,1= [ 1000 0100 0010 0001 ] =Hα1(1) Hα2(1) (G),

so that st1,1=.

Next,

st-1,1= [ -1000 0100 00-10 0001 ] =st-1,1= Hα2(-1).

Then st-1,1 consists of B, w1B, xα2(c)w2B, w1xα2(c)w2B, xα2(c)w2w1B, w1xα2(c)w2w1B, xα2(c)w2w1xα2(d)w2B, and xα2(c)w2w1xα2(d)w2w1B, for c,d.

If z1,q±2z1,q±2, then

st1,z= [ z1/2000 0z1/200 00z-1/20 000z-1/2 ] =Hα1(z1/2) Hα2(z).

Then st1,z consists of B, w2B, xα1(c)w1B, w2w1B, xα1(c)w1w2B, w2w1w2B, xα1(c)w2w1w2B, and xα1(c)w1w2w1w2B, for c. Geometrically, this consists of four disjoint copies of 1.

Next,

st1,q2= [ q000 0q00 00q-10 000q-1 ] =Hα1(q) Hα2(q2).

Then st1,q2 contains B, w2B xα1(c)w1B, w2w1B, xα1(c)w1w2B, w2w1w2B, xα1(c)w1w2w1B, and xα1(c)w1w2w1w2B, for c. (This changes for specific values of q only if q2=1, in which case st1,q2 is central.) Geometrically, this consists of four disjoint copies of 1

Next,

stq2,1= [ 1000 0q200 0010 000q-2 ] =Hα1(q2) Hα2(q2).

Then stq2,1 contains B, w1B, xα2(c)w2B, w1w2B, xα2(c)w2w1B, w1w2w1B, xα2(c)w2w1w2B, and w1w2w1xα2(c)w2B, for c. (This changes only if q2=±1, in which case st was computed above.) Geometrically, this consists of four disjoint copies of 1.

Next,

stq,1= [ 1000 0q00 0010 000q-1 ] =Hα1(q) Hα2(q).

Then stq,1 consists of B, w1B, xα2(c)w2B, w1w2B, xα2(c)w2w1B, w1w2w1B, xα2(c)w2w1w2B, and w1w2w1xα2(c)w2B, for c. (This changes only if q=±1, in which case st was computed above.) Geometrically, this consists of four disjoint copies of 1.

Next,

st-q,1=± [ 1000 0-q00 0010 000-q-1 ] =Hα1(-q) Hα2(-q).

Then st-q,1 contains B, w1B, xα2(c)w2B, w1w2B, xα2(c)w2w1B, w1w2w1B, xα2(c)w2w1w2B, and w1w2w1xα2(c)w2B, for c. (This changes only if q=±1, in which case st was computed above.) Geometrically, this is four disjoint copies of 1.

If z1,q±1,q±2, then

stz,1= [ 1000 0z00 0010 000z ] =stz,1= Hα1(z) Hα2(z).

Then st1,q2 contains B, w1B, xα2(c)w2B, w1w2B, xα2(c)w2w1B, w1w2w1B, xα2(c)w2w1w2B, and w1w2w1xα2(c)w2B, for c. Geometrically, this is four disjoint copies of 1.

Next,

stq2,q2= [ q000 0q300 00q-10 000q-3 ] =Hα1(q4) Hα2(q3).

Then stq2,q2 consists of wB for wW0, eight disjoint points.

This changes if q4=1, q6=1, or q2=1. If q2=1, then st is central. If q4=1, then st is in the same orbit as st1,q2 above. If q6=1, then stq2,q2 consists of wB for wW0, w1xα2(c)w2B, w1xα2(c)w2w1B, w1xα2(c)w2w1w2B, and w2w1xα2(c)w2B. Geometrically, this is four disjoint copies of 1.

If z1, q±2, q-4, q-6, then

stq2,z= [ z1/2000 0q2z1/200 00z-1/20 000q-2z-1/2 ] .

Then stq2,z consists of wB for wW0, which is eight disjoint points.

Next,

st-1,q2= [ -q000 0q00 00-q-10 000q-1 ] =Hα1(q) Hα2(-q2).

Then st-1,q2 consists of wB for wW0, which is eight disjoint points.

If z±1, q±2, q-4, -q-2, then

stz,q2= [ q000 0zq00 00q-10 000z-1q-1 ] =Hα1(zq) Hα2(zq2).

Then stz,q2 consists of wB for wW0, which is eight disjoint points.

Nilpotent Elements

The next goal is to understand the action of exp(ceα) on the elements of G/B.

Case: exp(ceα1)=xα1(c):

Cosets starting with xα1(d):

xα1(c)· xα1(d)w1B = xα1(c+d)w1B , xα1(c)· xα1(d)w1 xα2(e)w2 B = xα1(c+d)w1 xα2(e)w2 B, xα1(c)· xα1(d)w1 xα2(e)w2 xα1(f)w1 B = xα1(c+d)w1 xα2(e)w2 xα1(f)w1 B, xα1(c)· xα1(d)w1 xα2(e)w2 xα1(f)w1 xα2(g)w2 B = xα1(c+d)w1 xα2(e)w2 xα1(f)w1 xα2(g)w2 B,

Cosets starting with xα2(d):

xα1(c)· xα2(d)w2 B = xα2(d) xα1(c) xα1+α2(cd) x2α1+α2(-c2d)w2 B = xα2(d)w2 xα1+α2(-c) xα1(cd) x2α1+α2(-c2d) B = xα2(d)w2 B xα1(c)· xα2(d)w2 xα1(e)w1B = xα2(d) xα1(c) xα1+α2(cd) x2α1+α2(-c2d)w2 xα1(e)w1 B = xα2(d)w2 xα1+α2(-c) xα1(cd) x2α1+α2(-c2d) xα1(e)w1 B = xα2(d)w2 xα1+α2(-c) xα1(cd+e) x2α1+α2(-c2d) w1 B = xα2(d)w2 xα1(cd+e) xα1+α2(-c) x2α1+α2(c2d+2ce) w1B = xα2 (d) w2 xα1 (cd+e) w1 xα1+α2 (c) xα1 (c2d+2ce) B = xα2 (d) w2 xα1 (cd+e) w1 B xα1(c)· xα2(d)w2 xα1(e)w1 xα2(f)B = xα2 (d) w2 xα1 (cd+e) w1 xα1+α2 (c) xα1 (c2d+2ce) xα2 (f) w2 B = xα2 (d) w2 xα1 (cd+e) w1 xα2 (f) xα1+α2 (c) xα1 (c2d+2ce) · xα1+α2 (c2df+2cef) x2α1+α2 (-f(c2d+2ce)2) w2 B = xα2 (d) w2 xα1 (cd+e) w1 xα2 (f) w2 xα1 (c) xα1+α2 (-c2d-2ce) · xα1 (+c2df+2cef) x2α1+α2 (-f(+c2d+2ce)2) B = xα2(d)w2 xα1(cd+e) w1xα2(f) w2B

Case: exp(ceα2)=xα2(c):

Cosets starting with xα2(d):

xα2(c)· xα2(d)w2 B = xα2(c+d)w2 B xα2(c)· xα2(d)w2 xα1(e)w1 B = xα2(c+d)w2 xα1(e)w1 B xα2(c)· xα2(d)w2 xα1(e)w1 xα2(f)w2 B = xα2(c+d)w2 xα1(e)w1 xα2(f)w2 B xα2(c)· xα2(d)w2 xα1(e)w1 xα2(f)w2 xα1(g)w1 B = xα2(c+d)w2 xα1(e)w1 xα2(f)w2 xα1(g)w1 B

Cosets starting with xα1(d):

xα2(c)· xα1(d)w1B = xα1(d) xα2 (c) xα1+α2 (-cd) x2α1+α2 (c2d) w1 B = xα1(d) w1 xα1+α2 (c) x2α1+α2 (cd) xα2 (c2d) B = xα1(d) w1 B xα2(c)· xα1(d)w1 xα2(e)w2B = xα1(d)w1 x2α1+α2 (c) xα1+α2 (cd) xα2 (c2d) xα2 (e) w2 B = xα1(d)w1 xα2 (c2d+e) w2 x2α1+α2 (c) xα1 (cd) B = xα1(d)w1 xα2 (c2d+e) w2 B xα2(c)· xα1(d)w1 xα2(e)w2 xα1(f)w1B = xα1(d)w1 xα2(c2d+e)w2 x2α1+α2 (c) xα1 (cd) xα1 (d) w1 B = xα1(d)w1 xα2(c2d+e)w2 xα1(f+cd)w1 xα2(c) B = xα1(d)w1 xα2(c2d+e)w2 xα1(f+cd)w1 B

Case: exp(ceα1+α2) =xα1+α2(c):

Cosets starting with xα1(d):

xα1+α2(c) ·xα1(d)w1B = xα1(d) xα1+α2 (c) x2α1+α2 (-2cd) w1 B = xα1(d) w1 xα1+α2 (-c) xα2 (-2cd) B = xα1(d) w1 B xα1+α2 (c)·xα1 (d)w1xα2 (e)w2B = xα1(d)w1 xα1+α2 (c) xα2 (-2cd) xα2 (e) w2 B = xα1(d)w1 xα1+α2 (c) xα2 (e-2cd) w2 B = xα1(d)w1 xα2 (e-2cd) w2 xα1(c) B = xα1(d)w1 xα2 (e-2cd) w2 B xα1+α2 (c)·xα1 (d)w1xα2 (e)w2xα1 (f)w1B = xα1(d)w1 xα2(e-2cd) w2xα1 (c) xα1 (f) w1B = xα1(d)w1 xα2(e-2cd) w2xα1 (c+f) w1B

Cosets starting with xα2(d):

xα1+α2(c) ·xα2(d)w2B = xα2(d) xα1+α2(c) w2B = xα2(d)w2 xα1(c)B = xα2(d)w2B xα1+α2(c) ·xα2(d)w2 xα1(e)w1B = xα2(d)w2xα1 (c)xα1(e) w1B = xα2(d)w2xα1 (c+e)w1B xα1+α2(c) ·xα2(d)w2 xα1(e)w1 xα2(f)w2B = xα2(d) w2xα1 (c)xα1(e) w1xα2(f) w2B = xα2(d) w2xα1 (c+e) w1xα2(f) w2B xα1+α2(c) ·xα2(d)w2 xα1(e)w1 xα2(f) w2xα1(g)w1 B = xα2(d)w2α1 (c)xα1(e) w1xα2(f) w2xα1(g) w1B = xα2(d)w2α1 (c+e) w1xα2(f) w2xα1(g) w1B

Case: exp(ce2α1+α2) =x2α1+α2(c):

Cosets starting with xα1(d):

x2α1+α2 (c)·xα1(d) w1B = xα1(d) x2α1+α2 (c)w1B = xα1(d) w1xα2(c)B = xα1(d) w1B x2α1+α2(c) ·xα1(d)w1 xα2(e)w2B = xα1(d)w1xα2 (e)xα2(e) w2B = xα1(d)w1xα2 (e+c) w2B x2α1+α2(c)· xα1(d)w1 xα2(e)w2 xα1(f)w1B = xα1(d)w1 xα2 (c)xα2(e) w2xα1(f) w1B = xα1(d)w1 xα2 (e+c) w2xα1(f) w1B x2α1+α2(c)· xα1(d)w1 xα2(e)w2 xα1(f)w1 xα2(g)w2B = xα1(d)w1xα2 (c)xα2(e) w2xα1(f) w1xα2(g) w2B = xα1(d)w1xα2 (e+c) w2xα1(f) w1xα2(g) w2B

Cosets starting with xα2(d):

x2α1+α2(c) ·xα2(d)w2B = xα2(d)w2 x2α1+α2(c) B = xα2(d)w2 B x2α1+α2(c)· xα2(d)w2xα1 (e)w1B = xα2(d)w2 x2α1+α2 (c) xα1 (e) w1 B = xα2(d)w2 (e) w1 xα2 (c) B = xα2(d)w2 (e) w1 B x2α1+α2(c)· xα2(d)w2 xα1(e)w1 xα2(f)w2B = xα2(d)w2 x2α1+α2 (c) xα1 (e) w1 xα2 (f) w2B = xα2(d)w2 xα1(e)w1 xα2(c) xα2(f)w2B = xα2(d)w2 xα1(e)w1 xα2 (f+c)w2B

exp ( eα2+ e2α1+α2 ) =xα2(1) x2α1+α2 (1):

Cosets starting with xα2(c):

xα2(1) x2α1+α2(1) ·xα2(c)w2B = xα2(c+1)w2 x2α1+α2(1) B = xα2(c+1)w2B xα2(1) x2α1+α2(1)· xα2(c)w2 xα1(d)w1 B = xα2(c+1)w2 x2α1+α2(1) xα1(d)w1B = xα2(c+1)w2 xα1(d)w1 xα2(1)B = xα2(c+1)w2 xα1(d)w1B xα2(1) x2α1+α2(1) · xα2(c)w2 xα1(d)w1 xα2(e)w2B = xα2(c+1)w2 x2α1+α2(1) xα1(d)w1 xα2(e)w2B = xα2(c+1)w2 xα1(d)w1 xα2(e)w2 B = xα2(c+1)w2 xα1(d)w1 xα2(e+1)w2B xα2(1) x2α1+α2(1) · xα2(c)w2 xα1(d)w1 xα2(e)w2 xα1(f)w1B = xα2(c+1)w2 x2α1+α2(1) xα1(d)w1 xα2(e)w2 xα1(f)w1B = xα2(c+1)w2 xα1(d)w1 xα2(1) xα2(e)w2 xα1(f)w1B = xα2(c+1)w2 xα1(d)w1 xα2(e+1)w2 xα1(f)w1B

Cosets starting with xα1(c):

xα2(1) x2α1+α2(1) · xα1(c)w1 B = xα2(1)· xα1(c)w1 B = xα1(c)w1 B xα2(1) x2α1+α2(1) · xα1(c)w1 xα2(d)w2 B = xα2(1)· xα1(c)w1 xα2(d+1)w2 B = xα1(c)w1 xα2(c+d+1)w2 B xα2(1) x2α1+α2(1) · xα1(c)w1 xα2(d)w2 xα1(e)w1 B = xα2(1)· xα1(c)w1 xα2(d+1)w2 xα1(e)w1 B = xα1(c)w1 xα2(c+d+1)w2 xα1(c+f)w1 B

Case: exp(eα1+eα2) = xα1+α2(1/2) xα2(1) xα1(1) x2α1+α2(1) :

Cosets starting with xα1(c):

xα1+α2(1/2) xα2(1) xα1(1) x2α1+α2(1) · xα1(c)w1 B = xα1+α2(1/2) xα2(1) xα1(1) · xα1(c)w1 B = xα1+α2(1/2) xα2(1) · xα1(c+1)w1 B = xα1+α2(1/2) · xα1(c+1)w1 B = xα1(c+1)w1 B xα1+α2(1/2) xα2(1) xα1(1) x2α1+α2(1) · xα1(c)w1 xα2(d)w2 B = xα1+α2(1/2) xα2(1) xα1(1) · xα1(c)w1 xα2(d+1)w2 B = xα1+α2(1/2) xα2(1) · xα1(c+1)w1 xα2(d+1)w2 B = xα1+α2(1/2) · xα1(c+1)w1 xα2(c+d+2)w2 B = xα1(c+1)w1 xα2(d+1)w2 B xα1+α2(1/2) xα2(1) xα1(1) x2α1+α2(1) · xα1(c)w1 xα2(d)w2 xα1(e)w1 B = xα1+α2(1/2) xα2(1) xα1(1) · xα1(c)w1 xα2(d+1)w2 xα1(e)w1 B = xα1+α2(1/2) xα2(1) · xα1(c+1)w1 xα2(d+1)w2 xα1(e)w1 B = xα1+α2(1/2) · xα1(c+1)w1 xα2(d+c+2)w2 xα1(e+c+1)w1 B = xα1(c+1)w1 xα2(d+1)w2 xα1(e+c+3/2)w1 B xα1+α2(1/2) xα2(1) xα1(1) x2α1+α2(1) · xα1(c)w1 xα2(d)w2 xα1(e)w1 xα2(f)w2 B = xα1+α2(1/2) xα2(1) xα1(1) · xα1(c)w1 xα2(d+1)w2 xα1(e)w1 xα2(f)w2 B = xα1+α2(1/2) xα2(1) · xα1(c+1)w1 xα2(d+1)w2 xα1(e)w1 xα2(f)w2 B = xα1+α2(1/2) · xα1(c+1) xα2(1) xα1+α2(-cd) x2α1+α2(c2d)w1 xα2(d+1)w2 xα1(e)w1 xα2(f)w2 B = xα1+α2(1/2) · xα1(c+1)w1 xα2(1) x2α1+α2(1)w1 xα1+α2(cd) xα2(c2d) xα2(d+1)w2 xα1(e)w1 xα2(f)w2 B = xα1+α2(1/2) · xα1(c+1)w1 xα2(1) x2α1+α2(1)w1 xα1+α2(cd) xα2(c2d+d-1)w2 xα1(e)w1 xα2(f)w2 B = xα1+α2(1/2) · xα1(c+1)w1 xα2(c2d+d-1)w2 x2α1+α2(1) xα1(cd) xα1(e)w1 xα2(f)w2 B = xα1+α2(1/2) · xα1(c+1)w1 xα2(c2d+d-1)w2 xα1(e+cd) x2α1+α2(1)w1 xα2(f)w2 B = xα1+α2(1/2) · xα1(c+1)w1 xα2(c2d+d-1)w2 xα1(e+cd)w1 xα2(1) xα2(f)w2 B = xα1+α2(1/2) · xα1(c+1)w1 xα2(c2d+d-1)w2 xα1(e+cd)w1 xα2(f+1)w2 B = xα1(c+1)w1 xα2(c2d+d-c-2)w2 xα1(e+cd+1/2)w1 xα2(f+1)w2 B

Cosets starting with xα2(d):

xα1+α2(1/2) xα2(1) xα1(1) x2α1+α2(1) · xα2(c)w2B = xα1+α2(1/2) xα2(1) xα1(1) · xα2(c)w2B = xα1+α2(1/2) xα2(1) · xα2(c)w2B = xα1+α2(1/2) · xα2(c+1)w2B = xα2(c+1)w2B xα1+α2(1/2) xα2(1) xα1(1) x2α1+α2(1) · xα2(c)w2 xα1(d)w1 B = xα1+α2(1/2) xα2(1) xα1(1) · xα2(c)w2 xα1(d)w1 B = xα1+α2(1/2) xα2(1) · xα2(c)w2 xα1(c+d)w1 B = xα1+α2(1/2) · xα2(c+1)w2 xα1(c+d)w1 B = xα2(c+1)w2 xα1(c+d+1/2)w1 B xα1+α2(1/2) xα2(1) xα1(1) x2α1+α2(1) · xα2(c)w2 xα1(d)w1 xα2(e)w2B = xα1+α2(1/2) xα2(1) xα1(1) · xα2(c)w2 xα1(d)w1 xα2(e+1)w2B = xα1+α2(1/2) xα2(1) · xα2(c)w2 xα1(c+d)w1 xα2(e+1)w2B = xα1+α2(1/2) · xα2(c+1)w2 xα1(c+d)w1 xα2(e+1)w2B = xα2(c+1)w2 xα1(c+d+1/2)w1 xα2(e+1)w2B

The varieties (s,n)

We examine the varieties (s,n), which are the cosets in G/B fixed by both s and exp(n), for each pair (s,n) listed in Theorems 3.19-3.23. The Kazhdan-Lusztig classification calls for an examination of the action of the simultaneous centralizer in G of s and n on s,n. Note that Z(G)2 is always contained in this centralizer, but acts trivially on s,n. Thus in the discussion below, we let C(s,n) be the quotient of the centralizer of s and n by the center.

Generic q:

If n=0, then s,n=n, so we only specify s,n if n0. When n=0, the homology H*(st,0) is the principal series module M(t).

If

(s,n)= ( ± [ q000 0q00 00q-10 000q-1 ] ,eα2 ) ,

then s,n consists of B, xα1(c)w1B, w1w2B, and w1w2w1B. This is a single 1 and two points. The centralizer of s is generated by D, xα1(c), and x-α1(c), so that CG(s,n) is generated by Z(G), {dα1(z)z×} and x-α1(c), and C(s,n) is trivial.

If

(s,n)= ( ± [ q000 0q00 00q-10 000q-1 ] , eα1+α2 ) ,

then s,n consists of B, xα1(c)w1B, w2B, and w1w2B. This is a single 1 and two points. The centralizer of s is generated by D, xα1(c), and x-α1(c), so that CG(s,n) is generated by Z(G), {dα1(z)dα2(z-1)z×} and dα1(-1)w1. Then C(s,n)= { id,dα1 (-1)w1 } .

We examine how C(s,n) acts on H(s,n).

dα1(-1)w1 B=w1B, dα1(-1)w1 · xα1(c)w1B = dα1(-1) x-α1(-c) w1w1B = x-α1(c) Hα1(-1)B = xα1(c-1) w1B, Hα1(-1)w1 ·w2B=w1w2B ,and Hα1(-1)w1 ·w1w2B=w2B.

This is a homeomorphism on 1, and switches the two points. H0(s,n) =3 be generated by α, β, and γ, which are the generators of H0(1), and of the points H0(w2B) and H0(w1w2)B, respectively. Then the component H(s,n)χ is 1-dimensional, generated by β-γ, where χ is the non-trivial representation of 2. H(s,n)triv is 3-dimensional, generated by β+γ and H(1), where triv is the trivial representation of 2.

B,xα1(c)w1B w1w2B w1w2w1B B,xα1(c)w1B w2B,w1w2B (st1,q2,eα2) (st1,q2,eα1+α2)

If

(s,n)= ( ± [ 1000 0q200 0010 000q-2 ] ,eα1 ) ,

then s,n consists of B, xα2(c)w2B, w2w1B, and w2w1w2B, which is one copy of 1 and two points. The centralizer of s is generated by D, xα2(c), and x-α2(c), so that CG(s,n) is generated by Z(G), {dα2(z)z×} and x-α2(c), and C(s,n) is trivial.

B,xα2(c)w2B w2w1B w2w1w2C (stq2,1,eα1)

If

(s,n)= ( ± [ 1000 0q00 0010 000q-1 ] , e2α1+α2 ) ,

then s,n consists of B, w1B, xα2(c)w2B, and xα2(c)w2w1B, which is two disjoint copies of 1. The centralizer of s is generated by Z(G), D, xα2(c), and x-α2(c), so that CG(s,n) is generated by Z(G), {dα1(z)dα2(z-2)z×}, xα2(c), and x-α2(c), and C(s,n) is trivial.

If

(s,n)= ( ± [ 1000 0-q00 0010 000-q-1 ] , e2α1+α2 ) ,

then s,n consists of B, w1B, xα2(c)w2B, and xα2(c)w2w1B, which is two disjoint copies of 1. The centralizer of s is generated by D, xα2(c), and x-α2(c), so that CG(s,n) is generated by Z(G), {dα1(z)dα2(z-2)z×} and xα2(c), and C(s,n) is trivial.

B,xα2(c)w2B w1B,xα2(c)w2w1B (st±q,1,e2α1+α2)

If

(s,n)= ( ± [ q000 0q300 00q-10 000q-3 ] , eα1 ) ,

then s,n consists of four points - B, w2B, w2w1B, and w2w1w2B. The centralizer of s is D, so that CG(s,n)= { ±dα2(z) z× } and C(s,n) is trivial.

If

(s,n)= ( ± [ q000 0q300 00q-10 000q-3 ] , eα2 ) ,

then s,n consists of four points - B, w1B, w1w2B, and w1w2w1B. The centralizer of s is D, so that CG(s,n)= { ±dα1(z) z× } and C(s,n) is trivial.

If

(s,n)= ( ± [ q000 0q300 00q-10 000q-3 ] , eα1+ eα2 ) ,

then s,n={B}. The centralizer of s is D, so that CG(s,n)= { ±dα1(z-1) dα2(z) z× } and C(s,n) is trivial.

B w2B w2w1B w2w1w2B B w1B w1w2B w1w2w1B (stq2,q2,eα1) (stq2,q2,eα2) B (stq2,q2,eα1+α2)

If

(s,n)= ( ± [ -q000 0q00 00-q-10 000q-1 ] , eα2 ) ,

then s,n consists of four points - B, w1B, w1w2B, and w1w2w1B. The centralizer of s is D, so that CG(s,n)= { ±dα1(z) z× } and its component group is trivial.

If

(s,n)= ( [ -q000 0q00 00-q-10 000q-1 ] , e2α1+α2 ) ,

then s,n consists of four points - B, w1B, w2B, and w2w1B. The centralizer of s is D, so that CG(s,n)= { ±dα1(z) dα2(z-2) z× } and C(s,n) is trivial.

If

(s,n)= ( [ -q000 0q00 00-q-10 000q-1 ] , eα2+ e2α1+α2 ) ,

then n consists of two points - B and w1B. The centralizer of s is D, so that CG(s,n)= { ±1,±dα1 (-1) } 22. However, C(s,n)=CG(s,n) acts trivially on s,n, so (s,n)triv =ns.

B w1B w1w2B w1w2w1B B w1B w2B w1w2B ( st-1,q2 ,eα2 ) ( st-1,q2, e2α1+α2 ) B w1B ( st-1,q2 ,eα2+ e2α1+α2 )

For z1,q±2, q-4,q-6, if

(s,n)= ( ± [ z1/2000 0q2z1/200 00z-1/20 000q-2z-1/2 ] , eα1 ) ,

then s,n consists of four points - B, w2B, w2w1B, and w2w1w2B. The centralizer of s is D, so that CG(s,n)= { ± dα2(z) z× } and C(s,n) is trivial.

For z±1,q±2, q-4,-q-2, if

(s,n)= ( ± [ q000 0zq00 00q-10 000z-1q-1 ] , eα2 ) ,

then s,n consists of four points - B, w1B, w1w2B, and w1w2w1B. The centralizer of s is D, so that CG(s,n)= { ± dα1(z) z× } and C(s,n) is trivial.

B w2B w2w1B w2w1w2B B w1B w1w2B w1w2w1B (stq2,z,eα1) (stz,q2,eα2)

q8=1 (=4):

The varieties s,n from the previous section change for the orbit of the semisimple element [ q000 0q300 00q-10 000q-3 ] , which now includes [ q000 0-q0 00q-10 000-q-1 ] . In this case 𝔤qs contains 6 non-zero orbits, 3 of which are not present for generic q.

Note that ( stq-4,q2, eα2 ) =w2w1· ( stq2,q2, e-2α1-α2 ) . If

(s,n)= ( [ q-3000 0q00 00q30 000q-1 ] , eα2 ) ,

then s=Hα2(q-2)Hα1(q). Then s,n consists of four points - B, w1B, w1w2B, and w1w2w1B. The centralizer of s is D, so that CG(s,n) is { ± dα1(z) z× } and C(s,n) is trivial.

Next, ( stq-2,q-2, eα2+e2α1+α2 ) =w2w1· ( stq2,q2, eα2+ e-2α1-α2 ) .

If

(s,n)= ( [ q-3000 0q00 00q30 000q-1 ] , eα2+ e2α1+α2 ) ,

then s,n consists of B and w1B. The centralizer of s is D, so that CG(s,n)= { 1±,± dα1(-1) } and C(s,n) is 2. However, C(s,n) acts trivially on s,n, so that (s,n)triv =s,n.

Finally, ( stq2,q2,1 ,eα1+eα2 ) =w2w1w2· ( stq2,q2,0, eα1+e-2α1-α2. ) If

(s,n)= ( [ q-3000 0q-100 00q30 000q ] ,eα1+eα2 ) ,

then s=Hα1(q-1) Hα2(q-4). Then s,n consists of B. The centralizer of s is D so that C(s,n) is trivial.

w1w2w1B w1w2B B w1B B w1B ( stq2,q2, e-2α1-α2 ) ( stq2,q2, eα2+ e-2α1-α2 ) B ( stq2,q2, eα1+ e-2α1-α2 )

q6=1 (=3):

The varieties s,n change from the generic case for s in the orbit of [ 1000 0q200 0010 000q-2 ] , which is now in the same orbit as ± [ q000 0q300 00q-10 000q-3 ] , depending on whether q3 is 1 or -1. The CG(stq2,1) -orbits in 𝒩qstq2,1 are represented by eα1, e-2α1-α2, and eα1+e-2α1-α2.

If

(s,n)= ( ± [ 1000 0q200 0010 000q-2 ] ,eα1 ) ,

then s,n consists of B, xα2(c)w2B, w2w1B, and w2w1w2B, which is one copy of 1 and two points. The centralizer of s is generated by x±α2(c) and D, so that CG(s,n) is generated by {x-α2(c)c} and { ±dα2(z) z× } . Then C(s,n) is trivial.

Note that ( stq-2,q-2 ,eα2 ) =w1w2· ( stq2,1, e-2α1-α2 ) .

If

(s,n)= ( ± [ q2000 0100 00q-20 0001 ] ,eα2 ) ,

then s,n consists of B, w1B, w1xα2(c)w2B, and w1xα2(c)w2w1B, which is two copies of 1. The centralizer of s is generated by x±(2α1+α2)(c) and D, so that CG(s,n) is generated by x±(2α1+α2)(c) for c and { ±dα1(z) z× } . Then C(s,n) is trivial.

Finally, ( stq2,q2, eα1+eα2 ) =w2w1w2· ( stq2,1, eα1+ e-2α1-α2 ) .

If

(s,n)= ( ± [ q2000 0100 00q-20 0001 ] ,eα2+ eα2 ) ,

then s,n consists of only B. The centralizer of s is generated by x±(2α1+α2)(c) and D, so that CG(s,n) is generated by x2α1+α2(c) for c, and { ±dα1(z) dα2(z-1) z× } . Hence C(s,n) is trivial.

B,xα2(c)w2B w2w1B w2w1w2B w1B,w1xα2(c)w2B B,w1xα2(c)w2w1B (stq2,1,eα1) ( stq2,1, e-2α1-α2 ) B ( stq2,1, eα1+ e-2α1-α2 )

q4=1 (=2):

Again, we note only the changes from the generic case. Also note that s,n= -s,n= q2s,n.

t1,q2

If s=st1,q2, then the CG(s)-orbits in 𝒩qs are represented by e±α2, e±(α1+α2), eα2+e-α1-α2, eα2+e-2α1-α2, and eα1+α2+e-α2.

We can check which nilpotent elements satisfy condition 3.1 using the following procedure. First, we note that an element of 𝔤qs takes the form

z=aeα2+b eα1+α2+c e2α1+α2+ de-α2+f e-α1-α2+g e-2α1-α2.

Then for each n, we find an 𝔰𝔩2-triple (n,y,h). By computing the commutator [y,z], we can determine necessary and sufficient conditions for z to commute with y. We then check, using the standard representation of 𝔤, whether an element z satisfying those conditions is necessarily nilpotent. We outline this check below.

n y Condition onZ𝔤(y) Z𝔤(y)𝔤qs𝒩 eα2 e-α2 a=b=0 no e-α2 e-α2 d=f=0 no eα1+α2 e-α1-α2 a=b=c=0 yes e-α1-α2 eα1+α2 d=f=g=0 yes eα2+e-α1-α2 4e-α2+3eα1+α2 a=f=g=0=4b-3d yes e-α2+eα1+α2 4eα2+3e-α1-α2 b=c=d=0=4f-3a yes eα2+e-2α1-α2 e-α2+e2α1+α2 a=g=0=b-f no

Specifically, e2α1+α2+ f2α1+α2 commutes with e±α2, and eα1+α2- e-α1-α2 commutes with e-α2+ e2α1+α2, so that e±α2 and eα2+e-2α1-α2 are not considered.

If

(s,n)= ( [ q000 0q00 00q-10 000q-1 ] , eα1+α2 ) ,

then s,n consists of B, xα1(c)w1B, w2B, and w1w2B, a 1 and two points. The centralizer of s is generated by D and x±α1(c), so that CG(s,n) is generated by { dα1(z) dα2(z-1) z× } and dα1(-1)w1. Then

C(s,n)= { 1,dα1(-1) w1 } 2.

If

(s,n)=w0· ( st1,q2, e-α1-α2 ) = ( [ q-1000 0q-100 00q0 000q ] ,eα1+α2 ) ,

then s,n consists of B, xα1(c)w1B, w2B, and w1w2B, a 1 and two points. The centralizer of s is generated by D and x±α1(c), so that CG(s,n) is generated by { dα1(z) dα2(z-1) c× } and dα1(-1)w1. Then C(s,n)= { 1,dα1 (-1)w1 } 2.

In both of these cases, as in the case of generic q, the action of C(s,n) on s,n switches the points w2B and w1w2B, and is a homeomorphism on 1= { xα1(c)w1 Bc } {B}. Thus the component of H(s,n) corresponding to the sign representation is 1-dimensional, spanned by [w2B]+ [w1w2B], while the component corresponding to the trivial representation is 3-dimensional.

If

(s,n)= w1w2w1· ( st1,q2, eα2+ e-α1-α2 ) = ( [ q000 0q-100 00q-10 000q ] , eα2+eα1 ) ,

then ={B}. The centralizer of s is generated by D and x±α1(c), so that C(s,n) is trivial.

If

(s,n)= w2 · ( st1,q2, eα1+α2 +e-α2 ) = ( [ q-1000 0q00 00q0 000q-1 ] , eα1+eα2 ) ,

then s,n={B}. The centralizer of s is generated by D and xα1(c), so that C(s,n) is trivial.

B,xα1(c)w1B w2B,w1w2B B,xα1(c)w1B w2B,w1w2B (st1,q2,eα1+α2) (st1,q2,e-α1-α2) B B ( st1,q2, eα2+ e-α1-α2 ) ( st1,q2, eα1+α2 +e-α2 )

Thus, the triples ( ss2t,eα1 +eα2,1 ) and ( ss1s2s1t, eα1+eα2,1 ) must correspond to the 1-dimensional modules with weights s2t and s1s2s1t, respectively, since the homology of those varieties are each 1-dimensional. Then ( st, eα1+α2,1 ) and ( sw0t, eα1+α2,1 ) correspond to the 2-dimensional modules, which have weights t and w0t. However, this leaves us with two triples not yet assigned to a module, ( st, eα1+α2,-1 ) and ( st, eα1+α2,-1 ) , and every module has been accounted for. This is the first case where Grojnowski’s condition 3.2 seems to be missing some information about the representation χ in the triple (s,n,χ). In particular, eliminating the triples ( st, eα1+α2,-1 ) and ( st, eα1+α2,-1 ) from our indexing set makes the correspondence a bijection.

tq2,1

If

(s,n) = ( [ 1000 0q200 0010 000q-2 ] , eα1 ) ,

then s,n consists of B, xα2(c)w2B, w2w1B, and w2w1xα2(c)w2B, two disjoint copies of 1. The centralizer of s is generated by x±α2(c) and D, so that CG(s,n) is generated by {x-α2(c)c} and {±dα2(z)z×}. Then C(s,n) is trivial.

B,xα2(c)w2B w2w1B,w2w1xα2(c)w2B (stq2,1,eα1)

tq,1

If

(s,n) = ( ± [ 1000 0q00 0010 000q-1 ] , e2α1+α2 ) ,

then s,n consists of B, w1B, xα2(c)w2B, and xα2(c)w2w1B, two disjoint copies of 1. The centralizer of s is generated by x±α2(c) and D, so that CG(s,n) is generated by Z(G), {x-α2(c)c} and dα1(-1). The group C(s,n) is isomorphic to 2, generated by dα1(-1), but this group acts trivially on s,n.

If

(s,n) = w0 · ( stq,1, e-2α1-α2 ) = ( ± [ 1000 0q-100 0010 000q ] , e2α1+α2 ) ,

then s,n consists of B, w1B, xα2(c)B, and xα2(c)w2w1B, two disjoint copies of 1. The centralizer of s is generated by x±α2(c) and D, so that CG(s,n) is generated by Z(G), {x-α2(c)c} and dα1(-1). The group C(s,n) is isomorphic to 2, generated by dα1(-1), but this group acts trivially on s,n.

B,xα2(c)w2B w1B,w1xα2(c)w2B B,xα2(c)w2B w1B,xα2(c)w2w1B ( st±q,1, e-2α1-α2 ) ( st±q,1, e2α1+α2 )

If z1,q±2, q-4,q-6 and

(s,n) = ( ± [ z1/2000 0q2z1/200 00z-1/20 000q-2z-1/2 ] , eα1 ) ,

then s,n consists of four points - B, w2B, w2w1B, and w2w1w2B. The centralizer of s is D so that CG(s,n) is {±dα2(z)z×}. Then C(s,n) is trivial.

If z1,q±2, q-4,q-6 and

(s,n) = ( ± [ q2z1/2000 0z1/200 00q-2z-1/20 000z-1/2 ] , eα1 ) ,

then s,n consists of four points - B, w2B, w2w1B, and w2w1w2B. The centralizer of s is D so that CG(s,n) is {±dα2(z)z×}. Then C(s,n) is trivial.

B w2B w2w1B w2w1w2B B w2B w2w1B w2w1w2B (stq2,z,eα1) (stq2,z,e-α1)

If z±1,q±2, q-4,-q-2 and

(s,n) = ( ± [ q000 0zq00 00q-10 000z-1q-1 ] , eα2 ) ,

then s,n consists of four points - B, w1B, w1w2B, and w1w2w1B. The centralizer of s is D so that CG(s,n) is {±dα1(z)z×}. Then C(s,n) is trivial.

If z±1,q±2, q-4,-q-2 and

(s,n) = ( ± [ q-1000 0zq00 00q-10 000z-1q-1 ] , eα2 ) ,

then s,n consists of four points - B, w1B, w1w2B, and w1W2w1B. The centralizer of s is D so that CG(s,n) is {±dα1(z)z×}. Then C(s,n) is trivial.

B w1B w1w2B w1w2w1B B w1B w1w2B w1w2w1B (stz,q2,eα2) (stz,q2,e-α2)

q2=1 (=1):

When q2=1, Z(t)=P(t) for any t, and CG(s) is the Lie group generated by D and { xα(c) α𝔤qs,c } . In fact, if eα and eβ are elements of 𝔤qs, then eα+β𝔤qs as well. Then 𝔤qs is a Lie subalgebra of 𝔤 and CG(s) is its associated Lie Group. Then the CG(s) orbits of 𝒩qs are exactly the (adjoint) nilpotent orbits of 𝔤qs. In addition, the set of Borel subgroups of CG(s) is precisely s, and the Weyl group of CG(s) is Wt, the stabilizer of t in W0.

Then, the Springer correspondence gives a bijection between irreducible representations of Wt and CG(st)-orbits of pairs (n,χ), where n is a nilpotent element of 𝔤 and χ is a simple representation of the component group of CG(st,n) that appears in H(s,n). But these are exactly the G-orbits of triples (st,n,χ) where χ is a simple representation of C(s,n) that appears in H(s,n). Then the orbits of such triples are in bijection with the irreducible representations of Wt. In turn, the results of section 1.2.9 show that the irreducible representations of Wt are in bijection with the irreducible representations of H with central character t. Thus, if q2=1, using the Springer correspondences for all the potential groups Wt gives a geometric indexing of the irreducible representations of H.

Bijections

We summarize the bijections between irreducible representations of H and orbits in

{ (s,n)s Gss,n𝔤qs }

paired with representations of C(s,n) appearing in H(s,n).

Generic q

Central Character Dimension Indexing Weights t1,1 8 (st,0,1) W0t t-1,1 8 (st,0,1) W0t t1,z 8 (st,0,1) W0t t1,q2 1 (st,eα1+α2,-1) s2t t1,q2 1 (st,eα2,1) w0t t1,q2 3 (st,eα1+α2,1) t,s2t t1,q2 3 (st,0,1) w0t,s2w0t tq2,1 4 (st,0,1) s1t,s2s1t,s1s2s1t tq2,1 4 (st,eα1,1) t,s1t,s2s1t tq,1 4 (st,0,1) s2s1t,s1s2s1t tq,1 4 (st,e2α1+α2,1) t,s1t t-q,1 4 (st,0,1) s2s1t,s1s2s1t t-q,1 4 (st,e2α1+α2,1) t,s1t tz,1 8 (st,0,1) W0t tq2,q2 1 (st,0,1) W0t tq2,q2 1 (st,eα1+eα2,1) t tq2,q2 3 (st,eα1,1) s2t,s1s2t,s2s1s2t tq2,q2 3 (st,eα2,1) s1t,s2s1t,s1s2s1t tq2,z 4 (st,0,1) s1t,s2s1t,s1s2s1t,w0t tq2,z 4 (st,eα1,1) t,s2t,s1s2t,s2s1s2t t-1,q2 2 (st,0,1) s2s1s2t,w0t t-1,q2 2 (st,eα2,1) s2t,s1s2t t-1,q2 2 (st,e2α1+α2,1) s2s1t,s1s2s1t t-1,q2 2 (st,eα2+e2α1+α2,1) t,s1t tz,q2 4 (st,0,1) s2t,s1s2t,s2s1s2t,w0t tz,q2 4 (st,eα2,1) t,s1t,s2s1t,s1s2s1t tz,w 8 (st,0,1) W0t Table 27: Geometric Indexing in TypeC2, with genericq.

q8=1

Central Character Dimension Indexing Weights t1,1 8 (st,0,1) W0t t-1,1 8 (st,0,1) W0t t1,z 8 (st,0,1) W0t t1,q2 1 (st,eα1+α2,-1) s2t t1,q2 1 (st,eα2,1) w0t t1,q2 3 (st,eα1+α2,1) t,s2t t1,q2 3 (st,0,1) s1s2t,s2s1s2t tq2,1 4 (st,0,1) s1t,s2s1t,s1s2s1t,w0t tq2,1 4 (st,eα1,1) t,s2t,s1s2t,s2s1s2t tq,1 4 (st,0,1) s2s1t,s1s2s1t tq,1 4 (st,e2α1+α2,1) t,s1t t-q,1 4 (st,0,1) s2s1t,s1s2s1t t-q,1 4 (st,e2α1+α2,1) t,s1t tz,1 8 (st,0,1) W0t tq2,q2 1 (ss1s2t,eα2,1) W0t tq2,q2 2 (ss1s2t,eα2+e2α1+α2,1) s2s1t,s1s2s1t tq2,q2 1 (ss2s1s2t,eα1+eα2,1) s2s1s2t tq2,q2 1 (st,eα1+eα2,1) t tq2,q2 2 (st,eα1,1) s2t,s1s2t tq2,q2 1 (st,eα2,1) s1t tq2,z 4 (st,0,1) s1t,s2s1t,s1s2s1t,w0t tq2,z 4 (st,eα1,1) t,s2t,s1s2t,s2s1s2t tz,q2 4 (st,0,1) s2t,s1s2t,s2s1s2t,w0t tz,q2 4 (st,eα2,1) t,s1t,s2s1t,s1s2s1t tz,w 8 (st,0,1) W0t Table 28: Geometric Indexing in TypeC2, withq8=1.

Note that (stq2,q2,0) is omitted from this bijection since Z𝔤(0)𝔤qs is not contained in 𝒩, and thus condition 3.1 omits it.

q6=1

Central Character Dimension Indexing Weights t1,1 8 (st,0,1) W0t t-1,1 8 (st,0,1) W0t t1,z 8 (st,0,1) W0t t1,q2 1 (st,eα1+α2,-1) s2t t1,q2 1 (st,eα2,1) s1s2t t1,q2 3 (st,eα1+α2,1) t,s2t t1,q2 3 (st,0,1) s1s2t,s2s1s2t tq2,1 3 (st,0,1) s2s1t,s1s2s1t tq2,1 3 (st,eα1,1) t,s1t tq2,1 1 (ss2s1t,eα2,1) s1t tq2,1 1 (ss2s1t,eα1+eα2,1) s2s1t tq,1 4 (st,0,1) s2s1t,s1s2s1t tq,1 4 (st,e2α1+α2,1) t,s1t tz,1 8 (st,0,1) W0t tq2,z 4 (st,0,1) s1t,s2s1t,s1s2s1t,s2s1s2s1t tq2,z 4 (st,eα1,1) t,s2t,s1s2t,s2s1s2t t-1,q2 2 (st,0,1) s2s1s2t,s1s2s1s2t t-1,q2 2 (st,eα2,1) s2s1t,s1s2s1t t-1,q2 2 (st,e2α1+α2,1) s2t,s1s2t t-1,q2 2 (st,eα2+e2α1+α2,1) t,s1t tz,q2 4 (st,0,1) s2t,s1s2t,s2s1s2t,s1s2s1s2t tz,q2 4 (st,eα2,1) t,s1t,s2s1t,s1s2s1t tz,w 8 (st,0,1) W0t Table 29: Geometric Indexing in TypeC2, withq6=1.

q4=1

Central Character Dimension Indexing Weights t1,1 8 (st,0,1) W0t t-1,1 4 (st,eα1,1) t,s1t t1,z 8 (st,0,1) W0t t1,q2 1 (st,e-α2+eα1+α2,1) s2t t1,q2 1 (st,eα2+e-α1+α2,1) s1s2t t1,q2 2 (st,eα1+α2,1) t t1,q2 ? (st,eα1+α2,1) ? t1,q2 2 (sw0t,eα1+α2,1) s2s1s2t t1,q2 ? (sw0t,eα1+α2,-1) ? tq,1 4 (st,e2α1+α2,1) t,s1t tq,1 4 (st,e-2α1-α2,1) s2s1t,s1s2s1t tz,1 8 (st,0,1) W0t tq2,z 4 (st,eα1,1) t,s2t,s1s2t,s2s1s2t tq2,z 4 (st,e-α1,1) s1t,s2s1t,s1s2s1t,s2s1s2s1t tz,q2 4 (st,eα2,1) t,s1t,s2s1t,s1s2s1t tz,q2 4 (st,e-α2,1) s2t,s1s2t,s2s1s2t,s1s2s1s2t tz,w 8 (st,0,1) W0t Table 30: Geometric Indexing in TypeC2, withq2=-1.

For the central character t1,q2 when q4=1, we note that condition 3.1 omits the nilpotent CG(st)-orbits of 0, e±α2, and eα2+e-2α1-α2 from conisderation.

q2=1

Central Character Dimension Indexing Weights t1,1 1 (st,0,1) sign t1,1 2 (st,eα1,1) t1,1 1 (st,eα1,-1) t1,1 1 (st,eα2,1) t1,1 1 (st,eα1+eα2,1) triv t1,z 4 (st,0,1) signH{1}H t1,z 4 (st,eα1,1) trivH{1}H tq,1 4 (st,0,1) signH{1}H tq,1 4 (st,e2α1+α2,1) trivH{1}H tz,1 4 (st,0,1) signH{1}H tz,1 4 (st,eα2,1) trivH{1}H tz,w 8 (st,0,1) triv[X]H Table 31: Geometric Indexing in TypeC2, withq=-1.

Notes and References

This is an excerpt from Matt Davis' Ph.D Thesis entitled Representations of Rank Two Affine Hecke Algebras at Roots of Unity, University of Wisconsin, 2010.

page history