Note that
(f1f2)∘2∘(f2f1)∘3∘f2∘2=f1f1f2f1f2f1f2f1f2f2f2f2+⋯+f2f2f2f2f2f1f2f1f2f1f1f1
so that the extremal terms correspond to paths near the boundary of the MV-polytope.
Example: If γ∨=7α1∨+5α2∨ and k=3, with
α1∨↙
and
α2∨↘,
then
This analysis of MV-cycles and irreducible characters of quiver Hecke algebras for type
A2 is part of joint work with A. Ghitza and S. Kannan on the relationship between MV-cycles and the Borel-Weil-Bott theorem. Of crucial importance here is the
result of Berenstein-Zelevinsky [BZ] REFERENCE HERE!!! characterizing the dual canonical basis for the
Type A2 case.
References
[An]
J. Anderson,
A polytope calculus for semisimple groups, Duke Math. J.
116 (2003), 567-588.
MR1958098 (2004a:20047)
[MG]
S. Morier-Genoud,
Relèvement Géométrique de l'involution Schützenberger et applications,
Thèse de Doctorat, l'Université Claude Bernard - Lyon 1, June 2006.
[BZ]
A. Berenstein and A. Zelevinsky,
Canonical bases for the quantum group of type Ar,
and piecewise linear combinatorics,
Duke Math J. 143 (1996), 473-502.
[Ka]
M. Kashiwara,
On Crystal Bases, in Representations of groups (Banff 1994), pp. 155-197,
Canadian Math. Soc. Conf. Proc. 16 American Math. Soc. 1995.
MR1357199
[Km1]
J. Kamnitzer,
Mirković-Vilonen cycles and polytopes, Ann. Math. ???
MR??????
[Km2]
J. Kamnitzer,
The crystal structure on the set of Mirković-Vilonen polytopes, Adv. Math.
215 (2007), 66-93.
MR2354986