MV type A2

Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville, VIC 3010 Australia
aram@unimelb.edu.au

Last updates: 16 February 2012

γ2γ1 γ2γ1 f1˜ f1˜ f1˜ f1˜ f1˜ f1˜ f1˜ f1˜ f1˜ f1˜ f1˜ f1˜ f1˜ f2˜ f2˜ f2˜ f2˜ f2˜ f2˜ f2˜ f2˜ f2˜ f2˜ f2˜ f2˜ f2˜ The corresponding dual canonical basis elements are 1 f1 f2 f12 f2f1 f1f2 f22 f13 f1f2f1 f1f1f2 f2f1f2 f1f2f2 f23 f14 f12f2f1 f12f1f2 (f2f1)2 f1f2 f2f1 (f1f2)2 f2f1 f22 f1f2 f22 f24 f15 f13 f2f1 f13 f1f2 f1( f2f1 )2 f1f1f2f2f1 f1( f1f2 )2 (f2f1 )2 f2 f1f2 f2 f1f2 (f1f2 )2 f2 f2f1 f23 f1f2 f23 f25

General formulas

If b = f 1 c1-k f 2 c2 f 1c3 b+ then

e1= α1, -c2 α2 -c3 α3 = c2-2c3 , e2= α2, -c3 αa = c3 , and e3=0.
for the Baumann-Gaussent formula
Zb = y1 ( te1 [t-1] c1 × ) y2 ( te2 [t-1] c2 × ) y1 ( te3 [t-1] c3 × ) t w0 λ+γ K
Then
ch( Δ21 ) = f2 f1 , ch( Δ12 ) = f1 f2 , f1 f2 = f1 f2 + q f2 f1 , f2 f1 = f2 f1 + q f1 f2 .

If γ = γ1 α1 + γ2 α2 with γ2 γ1 then

bk = f 1 γ1-k f 2 γ2 f 1k b+ = f 2 γ2-γ1 +k f 1 γ1 f 1 γ1-k b+ ,      for k=1,2, γ1,
with
Lbk = hd( Δ2 ( γ2 -γ1 +k) Δ12 ( γ1-k) Δ1 (k) ) = hd( Δ1 ( γ1 -k) Δ21 (k) Δ2 ( γ2 -k) ) ,
Zbk = y1 ( tγ2-2k [t-1] γ1-k × ) y2 ( tk [t-1] γ2 × ) y1 ( [t-1] k × ) t w0 λ+γ K
and
ch(Lbk) = ch(Zbk) = (f1f2) k (f2f1) (γ1-k) f2 (γ2- γ1) .
If γ = γ1 α1 + γ2 α2 with γ2 γ1 then
bk = f 1 γ1-k f 2 γ2 f 1k b+ = f 2k f 1 γ1 f 1 γ2-k b+ ,      for k=1,2, γ2,
with
Lbk = hd( Δ2 (k) Δ12 ( γ2-k) Δ1 ( γ1 -γ2+k) ) = hd( Δ1 ( γ1 -k) Δ21 (k) Δ2 ( γ2 -k) ) ,
Zbk = y1 ( tγ2-2k [t-1] γ1-k × ) y2 ( tk [t-1] γ2 × ) y1 ( [t-1] k × ) t w0 λ+γ K
and
ch(Lbk) = ch(Zbk) = f1 (γ1- γ2) (f1f2) (γ2-k) (f2f1) k .

Example: If γ = 5 α1 + 7 α2 with α1 and α2 , then

b3 = f 12 f 27 f 13 b+ = f 25 f 15 f 22 b+ ,
k=3 γ1-k=2 γ2-γ1+k=5 2=γ1-k 4=γ2-k 5=γ1 7=γ2 3=k 2=γ1-k
the corresponding column strict tableau is
b3= 33333 2 3333333 3 3333333333 4 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 3 3 3 2 2 2 2 2 2 3 3 3 3
and the bead diagram is
and
Lb3 = hd( Δ2 5 Δ12 2 Δ1 3 ) = hd( Δ1 2 Δ21 3 Δ2 4 ) ,
Zb3 = { y1 ( a1t-1 +a2) y2 ( a3t-4 + a4t-3 + a5t-2 + a6t-1 + a7 + a8t + a9t2 ) y1 ( a10t-3 + a11t-2 + a12t-1 ) t w0 λ+γ K | ai }
and
ch(Lb3) = ch(Zb3) = (f1f2) 2 (f2f1) 3 f2 2 .
Note that (f1f2) 2 (f2f1) 3 f2 2 = f1 f1 f2 f1 f2 f1 f2 f1 f2 f2 f2 f2 ++ f2 f2 f2 f2 f2 f1 f2 f1 f2 f1 f1 f1 so that the extremal terms correspond to paths near the boundary of the MV-polytope.

Example: If γ = 7 α1 + 5 α2 and k=3, with α1 and α2 , then

b3 = f 14 f 25 f 13 b+ = f 23 f 17 f 22 b+ ,
n1' n2' n3' n1 n2 n3 c1 c2 c3 c1' c2' c3'
the corresponding column strict tableau is
333333333 4 3333333 3 33333 2 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 3 3 3 2 2 2 2 2 2 2 2 3 3
and the bead diagram is
PICTURE OF BEAD DIAGRAM HERE
and
Lb3 = hd( Δ2 3 Δ12 2 Δ1 5 ) = hd( Δ1 4 Δ21 3 Δ2 2 ) ,
Zb3 = y1 ( t-1 [t-1] 4 × ) y2 ( t3 [t-1] 5× ) y1 ( [t-1] 3× ) t w0 λ+γ K
and
ch(Lb3) = ch(Zb3) = f1 2 (f1f2) 2 (f2f1) 3 .

Notes and References

This analysis of MV-cycles and irreducible characters of quiver Hecke algebras for type A2 is part of joint work with A. Ghitza and S. Kannan on the relationship between MV-cycles and the Borel-Weil-Bott theorem. Of crucial importance here is the result of Berenstein-Zelevinsky [BZ] REFERENCE HERE!!! characterizing the dual canonical basis for the Type A2 case.

References

[An] J. Anderson, A polytope calculus for semisimple groups, Duke Math. J. 116 (2003), 567-588. MR1958098 (2004a:20047)

[MG] S. Morier-Genoud, Relèvement Géométrique de l'involution Schützenberger et applications, Thèse de Doctorat, l'Université Claude Bernard - Lyon 1, June 2006.

[BZ] A. Berenstein and A. Zelevinsky, Canonical bases for the quantum group of type Ar, and piecewise linear combinatorics, Duke Math J. 143 (1996), 473-502.

[Ka] M. Kashiwara, On Crystal Bases, in Representations of groups (Banff 1994), pp. 155-197, Canadian Math. Soc. Conf. Proc. 16 American Math. Soc. 1995. MR1357199

[Km1] J. Kamnitzer, Mirković-Vilonen cycles and polytopes, Ann. Math. ??? MR??????

[Km2] J. Kamnitzer, The crystal structure on the set of Mirković-Vilonen polytopes, Adv. Math. 215 (2007), 66-93. MR2354986

page history