The Octahedral Group

The Octahedral Group S4

Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville, VIC 3010 Australia
aram@unimelb.edu.au

Last updates: 10 February 2011

The Octahedral Group S4

The group S4 can be represented in several different ways. Some of these are given in the following table.

Set Operation
permutations of 4 elements composition of permutations
rotations preserving a cube compositions of rotations
rotations preserving an octahedron composition of rotations

The complete multiplication table for S4 is 24×24 matrix. This matrix is too big to include here. In the following tables we shall use one-line notation to represent the permutations in S4.

Center Abelian Conjugacy classes
ZS4=1 No 𝒞14=1234
𝒞212=2134,3214,4231,1324,1432,1243
𝒞22=2134,3412,4321
𝒞31=3124,4132,4213,1423,2314,2431,3241,1342
𝒞31=4123,3142,2413,4312,2341,3421

There are more than 30 subgroups of the group S4. We shall not give a list of all the subgroups ans we shall not give a subgroup lattice here. The following table lists only the normal subgroups of S4.

Subgroups Hi Structure Index Normal Quotient group
N0=S4 N0=S4 S4:S4=1 Yes S4/H01
N1=A4 N1=A4 S4:A4=2 Yes S4/A4μ2
N2=1234,2143,3412,4321 N2μ2×μ2 S4:H2=6 Yes S4/N2S3
N3=1234 N31 S4:N3=24 Yes S4/1S4

The following table gives two useful presentations of the octahedral group S4.

Generators Relations Realization
S,T S4=T2=ST3=1 S=4123,T=4231
s1,s2,s3 s12=s22=s32=1 s1=2134
s1s2s1=s2s1s2 s2=1321
s2s3s2=s3s2s3 s3=1243

In the following table s1=2134, s2=1324, s3=1243 denote the simple transpositions in the group S4. These simple transpositions generate S4. Note also that the homomorphism labelled φ14 is the sign homomorphism ϵ of the symmetric group S4.

Homomorphism Kernel
ϕ:S4S3s1213s2132s3213 kerϕ=N2
ϕ4:S41s11s21s31 kerϕ4=S4
ϕ14:S4μ2s1-1s2-1s3-1 kerϕ14=A4
ϕ212:S4GL3s1-1000-10001s2-10001/23/201/2-1/2s31/34/302/3-1/3000-1 kerϕ212=1
ϕ31:S4GL3s1-100010001s21/23/201/2-1/20001s310001/34/302/3-1/3 kerϕ31=1
ϕ22:S4GL2s1-1001s21/23/21/2-1/2s3-1001 kerϕ22=N2

References

[CM] H. S. M. Coxeter and W. O. J. Moser, Generators and relations for discrete groups, Fourth edition. Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], 14. Springer-Verlag, Berlin-New York, 1980. MR0562913 (81a:20001)

[GW1] F. Goodman and H. Wenzl, The Temperly-Lieb algebra at roots of unity, Pacific J. Math. 161 (1993), 307-334. MR1242201 (95c:16020)

page history