PBW Bases

PBW Bases

Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville, VIC 3010 Australia
aram@unimelb.edu.au

Last updates: 30 September 2010

PBW bases for 𝔤=𝔰𝔩2

In type SL2 there is only one reduced word for the longest element w0=s1, the only positive root is α1 and the negative root vector is Fα1=F1.

PBW bases for 𝔤=𝔰𝔩3

In type A2 with reduced word w0=s1s2s1 the roots are β1=α1, β2=s1(α2) =α1+α2=ρ, β3=s1s2(α1)=α2, and the negative root vectors are Fα1=F1, Fρ=T1(F2) =-F2F1+qF1F2, Fα2=T1T2(F1)=F2. For the reduced word w0=s2s1s2 the root vectors are β1=α1, β2=s2(α1)=α1+α2=ρ, β3=s2s1(α2)=α1, and the negative roots are Fα2=F2, Fρ=T1(F1)=-F1F2+qF2F2, Fα1=T2T1(F2)=F1. The canonical basis is the set E1(m) E2(m') E1(m'') with m'm+m'', which satisfies E1(m) E2(m+m'') E1(m'') = E2(m'') E1(m+m'') E2(m) . If m1m2 the space 𝕌-m1α1-m2α2 has bases w0 =s1s2s1 canonical basis w0 =s2s1s2 F1(m1) F2(m2) F1(m1) F2(m2) F2(m2-m1) Fρ(m1) F1(m1-1) Fρ F2(m2-1) F1(m1-1) F2(m2) F1 F2(m2-m1+1) Fρ(m1-1) F1 F1(m1-2) Fρ(2) F2(m2-2) F1(m1-2) F2(m2) F1(2) F2(m2-m1+2) Fρ(m1-2) F1(2) Fρ(m1) F2(m2-m1) F2(m2) F1(m1) F2(m2) F1(m1) with the canonical basis in the middle and the two PBW bases on each side. If m1m2, the space 𝕌-m1α1-m2α2 has bases w0 =s1s2s1 canonical basis w0 =s2s1s2 F1(m1) F2(m2) F1(m1) F2(m2) Fρ(m2) F1(m1-m2) F1(m1-1) Fρ F2(m2-1) F2 F1(m1) F2(m2-1) F2 Fρ(m2-1) F2(m1-m2+1) F1(m1-2) Fρ(2) F2(m2-2) F2(2) F1(m1) F2(m2-2) F2(2) Fρ(m2-2) F2(m1-m2+2) F1(m1-m2) Fρ(m2) F2(m2) F1(m1) F2(m2) F1(m1) with the canonical basis in the middle and the two PBW bases on each side. The most compact way to write the three bases is interms of paths in the corresponding MV polytope. Comparing the bases shows that the conversion between the indexings of the two PBW bases is Rs1s2s1 s2s1s2 (t1,t2,t3) = (t2+t3 -t1,t1,t2), ift1t3, (t2,t3, t1+t2 -t3), ift1t3.

Notes and references

The canonical basis is given on p. 447 of [Lu].

References

[Lu] G. Lusztig, Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc. 3 (1990), 447--498. MR1035415 (90m:17023)

[DRV] Z. Daugherty, A. Ram, and R. Virk, Affine and graded BMW algebras, in preparation.

page history