References

Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville, VIC 3010 Australia
aram@unimelb.edu.au

Last update: 1 April 2015

References

[Abe1980] E. Abe, Hopf algebras, Cambridge Tracts in Math., N 74, Cambridge University Press, Cambridge, New York, 1980.

[ABo0721448] M.F. Atiyah and R. Bott, The moment map and equivariant cohomology, Topology 23 (1984) 1-28, MR0721448.

[Ada1324104] J.F. Adams, Stable homotopy and generalised homology, Univ. of Chicago Press, 1974, MR1324104.

[ADe1980] S. Abeasis and A. Del Fra, Degenerations for the representations of an equi-oriented quiver of type Am, Boll. Un. Mat. Ital. Suppl. 1980, no. 2, 157-171. MR84e:16019

[ADK1981] S. Abeasis, A. Del Fra, and H. Kraft, The geomerty of representations of Am, Math. Ann. 256 (1981), 401-418. MR83h:14038

[AGM0808.2785] D. Anderson, S. Griffeth, and E. Miller, Positivity and Kleiman transversality in equivariant K-theory of homogeneos spaces, J. Eur. Math. Soc. 13 (2011) 57-84. MR2735076, arXiv:0808.2785.

[AIs1983] R. Askey and M.E.H. Ismail, A generalization of ultraspherical polynomials, in Studies in Pure Mathematics (ed. P. Erdös), Birkhäuser (1983), 55-78.

[AJS1994] H. Andersen, J.C. Jantzen, and W. Soergel, Representations of quantum groups at a pth root of unity and of semisimple groups in characteristic p: independence of p, Astérisque 22-, Soc. Math. France, 1994.

[Aki1989] K. Akin, Resolutions of representations, Contemp. Math. 88, 209-217 (1989).

[AKo1994] S. Ariki, K. Koike, A Hecke algebra of (/r)Sn and construction of its irreducible representations, Adv. Math. 106 (1994) 216–243.

[ALi1999] C. Athanasiadis, S. Linusson, A simple bijection for the regions of the Shi arrangement of hyperplanes, Discrete Math. 204 (1–3) (1999) 27–39.

[All1997] E. Allen, New bases for the decompositions of the regular representations of wreath products of Sn, preprint 1997.

[Alv1979] D. Alvis, The duality operation in the character ring of a finite Chevalley group, Bull. Am. Math. Soc., New Series, 1, 907-911 (1979).

[AMa1969] M.F. Atiyah and I.G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley, Reading, Massachusetts, 1969.

[AMa2000] S. Ariki and A. Mathas, On the number of simple modules of the Hecke algebras of type G(r,p,n), Math. Zeitschrift 233 (2000), no. 3, 601–623.

[AMR0506467] S. Ariki, A. Mathas and H. Rui, Cyclotomic Nazarov-Wenzl algebras, Nagoya Math. J. 182 (2006), 47–134, MR2235339, arXiv:math.QA/0506467.

[And1637129] M. Ando, Power operations in elliptic cohomology and representatives of loop groups, Trans. Amer. Math. Soc. 352 (2000) 56195666, MR1637129.

[Aom1988] K. Aomoto, A note on holonomic q-difference systems, Algebraic Analysis, 1, Eds. M. Kashiwara, T. Kawai, Academic Press. San diego (1988), 22-28.

[Ari0903.3453] S. Ariki, Graded q-Schur algebras, arXiv:0903.3453

[Ari1994] S. Ariki, On the semisimplicity of the Hecke algebra of (/r)Sn, J. Algebra 169 (1994), 216–225.

[Ari1995] S. Ariki, Representation theory of a Hecke algebra of G(r,p,n), J. Algebra 177 (1995), 164–185.

[Ari1996] S. Ariki, On the decomposition numbers of the Hecke algebra of G(m,1,n), J. Math. Kyoto Univ. 36 (1996), 789–808.

[Ari2002] S. Ariki, Representations of quantum algebras and combinatorics of Young tableaux, University Lecture Series 26 Amer. Math. Soc., Providence, RI, 2002. ISBN: 0-8218-3232-8, MR1911030 (2004b:17022)

[ASc1983] K.I. Appel and P.E. Schupp, Artin groups and infinite Coxeter groups, Invent. Math. 72, (1983), 201-220.

[ASt1203.6678] D. Anderson and A. Stapledon, Schubert varieties are lag Fano over the integers, to appear in Proc. Amer. Math. Soc. arXiv:1203.6678.

[ASu9710037] T. Arakawa and T. Suzuki, Duality between 𝔰𝔩n() and the degenerate affine Hecke algebra of type A, J. Algebra 209 (1998) 288–304. MR1652134 arXiv:q-alg/9710037

[Aub1995] M. Aubert, Dualité dans le groupe de Grothendieck de la categorie des représentations lisses de longueur finie d’un groupe réductif p-adique, Trans. Amer. Soc. 347 (1995) 2179–2189.

[Bar1983] D. Barbasch, Filtrations on Verma modules, Ann. Sci. École Norm. Sup. (4) 16 (1983), no. 3, (1984) 489–494.

[Bar1990] H. Barcelo, On the action of the symmetric group on the free Lie algebra and the partition lattice, J. Combin. Theory Ser. A 55 (1990), 93–129.

[Bar1993] H. Barcelo, Young straightening in a quotient Sn-module, J. Alg. Comb. 2 (1993), 5-23.

[Bas1985] V. Bashanov, Phys. Lett., 1985, 159B, N 4-5-6, 321-324.

[Bau1620662] P. Baumann, On the center of quantized enveloping algebras, J. Algebra 203 no. 1 (1998) 244–260. MR1620662

[Bax1982] R. Baxter, Exactly solved models in statistical mechanics, Academic press, London, 1982.

[BBC2012] B. Brubaker, D. Bump, G. Chinta, S. Friedberg and P. Gunnells, Metaplectic ice, Multiple Dirichlet series, L-functions and automorphic forms, 65–92, Progr. Math., 300, Birkhäuser/Springer, New York, 2012. MR2952572

[BBD1982] A. Beilinson, J. Bernstein, and P. Deligne, Faisceaux pervers, in Analyse et topologie sur les espaces singuliers (I), Astérisque 100, Soc. Math. France, 1982.

[BBe1993] A. Beilinson and J. Bernstein, A proof of Jantzen conjectures, in I.M. Gelfand seminar, S. Gelfand and S. Gindikin eds., Adv. in Soviet Math. 16 Part 1 (1993), 1–50.

[BBF2006] B. Brubaker, D. Bump and S. Friedberg, Weyl group multiple Dirichlet series. II. The stable case, Invent. Math. 165 (2006), no. 2, 325-355. MR2231959

[BBF2007] B. Brubaker, D. Bump, S. Friedberg and J. Hoffstein, Weyl group multiple Dirichlet series. III. Eisenstein series and twisted unstable Ar, Ann. of Math. (2) 166 (2007), no. 1, 293-316. MR2342698

[BBF2008] B. Brubaker, D. Bump and S. Friedberg, Twisted Weyl group multiple Dirichlet series: the stable case, Eisenstein series and applications, 1-26, Progr. Math., 258, Birkhäuser Boston, Boston, MA, 2008. MR2402679

[BBF2011] B. Brubaker, D. Bump and S. Friedberg, Weyl group multiple Dirichlet series, Eisenstein series and crystal bases, Ann. of Math. (2) 173 (2011), no. 2, 1081-1120. MR2776371

[BBF2011-2] B. Brubaker, D. Bump and S. Friedberg, Weyl group multiple Dirichlet series: type A combinatorial theory, Annals of Mathematics Studies, 175. Princeton University Press, Princeton, NJ, 2011. xiv+158 pp. ISBN: 978-0-691-15066-6. MR2791904

[BBF2011-3] B. Brubaker, D. Bump and S. Friedberg, Schur polynomials and the Yang-Baxter equation, Comm. Math. Phys. 308 (2011), no. 2, 281-301. MR2851143

[BBl1866492] A. Beliakova and C. Blanchet, Skein construction of idempotents in Birman-Murakami-Wenzl algebras, Math. Ann. 321 no. 2 (2001), 347–373. MR1866492 arXiv:math.QA/0006143

[BBL1990] G. Benkart, D. Britten, F. Lemire, Stability in modules for classical Lie algebras–a constructive approach, Mem. Amer. Math. Soc. 85 (1990).

[BBL2015] B. Brubaker, D. Bump and A. Licata, Whittaker functions and Demazure operators, J. Number Theory 146 (2015), 41-68. MR3267111

[BBu2006] B. Brubaker and D. Bump, Residues of Weyl group multiple Dirichlet series associated to GLn+1, Multiple Dirichlet series, automorphic forms, and analytic number theory, 115-134, Proc. Sympos. Pure Math., 75, Amer. Math. Soc., Providence, RI, 2006. MR2279933

[BCH1994] G. Benkart, M. Chakrabarti, T. Halverson, R. Leduc, C. Lee, J. Stroomer, Tensor product representations of general linear groups and their connections with Brauer algebras, J. Algebra 166 (1994), 529-567.

[BCu1972] On the Degrees and Rationality of Certain Characters of Finite Chevalley Groups, Transactions of the American Mathematical Society, 165 (1972), 251-273.

[BDy1994] Y. Billig and M. Dyer, Decompositions of Bruhat type for the Kac-Moody groups, Nova J. Algebra Geom. 3 no. 1 (1994), 11–31.

[Ber1986] A. Berele, A Schensted type correspondence for the symplectic group, J. Combin. Theory Ser. A 43 (1986), 320-328.

[Ber1986-2] A. Berele, Construction of Sp modules by tableaux, Linear and Multilinear algebra 19 (1986), 299-307.

[Bet1931] H. Bethe, Z. Phys. 1931, 71, 205-226.

[BEv0968883] P. Bressler and S. Evens, The Schubert calculus, braid relations, and generalized cohomology, Trans. Amer. Math. Soc. 317 (1990), 799-811, MR0968883.

[BEv1044959] P. Bressler and S. Evens, Schubert calculus in complex cobordism, Trans. Amer. Math. Soc. 331 (1992), 799-813, MR1044959.

[BFi0711.2083] A. Braverman and M. Finkelberg, Pursuing the double affine Grassmannian I: transversal slices via instantons on Ak-singularities, arXiv:0711.2083.

[BGa2001] A. Braverman and D. Gaitsgory, Crystals via the affine Grassmannian, Duke Math. J. 107 no. 3 (2001) 561–575.

[BGG1971] I.N. Bernstein, I.M. Gel’fand and S.I. Gel’fand, The structure of representations generated by vectors of highest weight, 1971.
*This reference was mostly in russian and couldn't be copied.

[BGG1973] I.N. Bernstein, I.M. Gel’fand and S.I. Gel’fand, Schubert cell and cohomology of the spaces G/P, Russ. Math. Surv. 28:3 (1973), 1-26.

[BGG1975] J. Berstein, S. Gelfand, I. Gelfand, Differential operators on the base affine space and a study of 𝔤-modules, in Lie groups and their representations (Proc. Summer School, Bolya Ja ́nos Math. Soc., Budapest, 1971, I.M. Gelfand Ed.) London, Hilger, (1975).

[BGG1975-2] I.N. Bernstein, I.M. Gel'fand, and S.I. Gel'fand, Publ. of 1971 Summer School in Math., Budapest (1975), pp. 21-64.

[BGG1976] I.N. Bernstein, I.M. Gel'fand and S.I. Gel'fand, On a certain category of 𝔤-modules, Funkts. Anal. Prilozhen., 10, No. 2, 1-8 (1976).

[BGP1973] I.N. Bernstein, I.M. Gelfand and V.A. Ponomarev, Coxeter functors and Gabriel's theorem, Russ. Math. Surv. 28 (1973), 17-32; also appears in "Izrail M. Gelfand, Collected Papers", Vol. II, Springer-Verlag, Springer-Verlag, New York-Berlin, 1988, pp. 765-780.

[BGr1971] C.T. Benson and L.C. Grove, Finite Reflection Groups, Bogden and Quigley, Tarrytown-on-Hudson, New York, 1971.

[Bir1969] J. Birman, On Braid groups, Commun. Pure Appl. Math., 22 (1969), 41-72.

[Bir1976] J. Birman, Braids, Links and Mapping Class Groups, Ann. of Math. Studies 82, Princeton Universoty Press, Princeton, 1976.

[Bjo1984] A. Björner, Orderings of Coxeter groups, in: Combinatorics and Algebra, Boulder, CO, 1983, Contemp. Math., Vol. 34, Amer. Math. Society, Providence, 1984, pp. 175–195. MR 86i:05024

[BKl1999] J. Brundan and A. Kleshchev, Some remarks on branching rules and tensor products for algebraic groups, J. Algebra 217 (1999), no. 1, 335-351.

[BKl1999-2] J. Brundan and A. Kleshchev, Modular Littlewood-Richardson coefficients, Math. Z. 232 (1999), no. 2, 287-320.

[BKl2000] J. Brundan and A. Kleshchev, On translation functors for general linear and symmetric groups, Proc. London Math. Soc. (3) 80 (2000), no. 1, 75--106.

[BKl2009] J. Brundan and A. Kleshchev, Graded decomposition numbers for cyclotomic Hecke algebras, Advances in Mathematics, vol. 222, no. 6, pp. 1883–1942, 2009.

[BKW1983] G.R.E. Black, R.C. King, and B.G. Wybourne, Kronecker products for compact semisimple Lie groups, J. Phys. A: Math. Gen., 16 (1983), pp.1555-1589.

[BLa1782635] S. Billey and V. Lakshmibai, Singular loci of Schubert varieties, Progress in Mathematics 182 Birkhäauser Boston, 2000. xii+251 pp. ISBN: 0-8176-4092-4, MR1782635.

[BLi0007108] L. Borisov and A. Libgober, Elliptic genera of singular varieties, Duke Math. J. 116 (2003) 319–351, MR1953295, arXiv:0007108.

[BLi1953295] L. Borisov and A. Libgober, Elliptic genera of singular varieties, Duke Math. J. 116 (2003) 319–351, MR1953295.

[BMa1993] M. Broué and G. Malle, Zyklotomische Heckealgebren, Astérisque 212 (1993), 119-189.

[BMM1993] M. BrouÉ, G. Malle, and J. Michel, Représentations unipotents génériques et blocs des groupes réductifs finis, Astérique 212, 1993.

[BMN1108.3087] D. Bump, P. McNamara and M. Nakasuji, Factorial Schur functions and the Yang-Baxter equation, arXiv:1108.3087

[BMo1989] D. Barbasch and A. Moy, A unitarity criterion for p-adic groups, Invent. Math. 98 (1989), 19-37. MR 90m:22038

[BMo1993] D. Barbasch and A. Moy, Reduction to real infinitesimal character in affine Hecke algebras, J. Amer. Math. Soc. 6 (1993), no. 3, 611–635. MR 93k:22015

[BNe1937] R. Brauer and C. Besbitt, On the regular representations of algebras, Proc. of Nat. Acad. of Sci. 23 (1937), 236-240.

[Bon2772408] C. Bonnafé, Semicontinuity properties of Kazhdan-Lusztig cells, New Zealand J. of Math. 39 (2009) 171–192. MR2772408 arXiv:0808.3522

[Bor0051508] A. Borel, Sur la cohomologie des espaces fibrés principaux et des espaceshomogènes de groupes de Lie compacts, Ann. of Math. (2) 57 (1953) 115–207, MR0051508.

[Bor1970] A. Borel, Properties and linear representations of Chevalley groups, in Seminar on algebraic groups and related finite groups, Springer Lecture Notes, Vol 131, 1970.

[Bor1976] A. Borel, Admissible representations of a semisimple group over a local field with vectors fixed under an Iwahori subgroup, Invent. Math. 35 (1976), 233–259. MR 56:3196

[Bot1957] R. Bott, Ann. Math., 66, 203-248 (1957).

[Bou1958] N. Bourbaki, Algèbre, Chapitre 8, Elements de Mathématique, Hermann, Paris 1958.

[Bou1960] N. Bourbaki, Groupes et Algebres de Lie, Chap. 4–6. Paris: Hermann 1960.

[Bou1964] Algébre Commutative, Chap. 5, 6, Paris, Hermann, 1964.

[Bou1968] N. Bourbaki, Groupes et Algébres de Lie, Chapitres 4, 5 et 6, Eléments de Mathématique, 34, Hermann, Paris, (1968). MR 39:1590

[Bou1972] N. Bourbaki, Groupes et algèbres de Lie, Chapt. I-VIII, Masson, Paris (1972).

[Bou1981] N. Bourbaki, Groupes et algèbres de Lie, Chapt. IV-VI, Masson, Paris (1981).

[Bou1990] N. Bourbaki, Algebra, Elements of Mathematics, Springer-Verlag, Berlin, 1990 (Chapters 1–3).

[Bou2002] N. Bourbaki, Lie groups and Lie algebras: Chapters 4-6, Elements of mathematics, Springer, New York, 2002.

[Bra1937] R. Brauer, On algebras which are connected with the semisimple continuous groups, Ann. Math. 38 (1937) 854–872.

[Bra1945] R. Brauer, On hypercomplex arithmetic and a theorem of Speiser, Festschrift für Speiser, 233-245, Zurich, 1945.

[Bra1967] B. Braden, Restricted representations of classical Lie algebras of type A2 and B2, Bull. Amer. Math. Soc., 73 (1967), 482-486.

[Bra1972] O. Bratteli, Inductive limits of finite dimensional C* algebras, Trans. AMS 171 (1972), 195-234.

[BRe1987] A. Berele and A. Regev, Hook Young diagrams with applications to combinatorics and to representations of Lie superalgebras, Adv. in Math. 64 (1987), 118-175.

[Bre1994] F. Brenti, A combinatorial formula for Kazhdan-Lusztig polynomials, Invent. Math. 118 (1994), 371–394.

[Bri1970] E. Brieskorn, Singular elements of semi-simple algebraic groups, in Actes Congrès Intern. Math. Nice. (1970), 279-284.

[Bri1971] E. Brieskorn, Die Fundamentalgruppe des Ruumes der regulären Orbits einer endlichen komplexen Opiegelungsgruppe, Invent. Math. 12 No. 1, (1971), 57-61.

[Bri1972] E. Brieskorn, Sur les groupes de tresses [d'après V. I. Arnol'd], Séminaire Bourbaki, 24e année, 1971/72, Exp. No. 401, pp. 21-44.

[Bri2002] M. Brion, Positivity in the Grothendieck group of complex flag varieties, J. Algebra 258 (1) (2002) 137–159.

[Bro1955] W.P. Brown, An algebra related to the orthogonal group, Michigan Math. J. 3 (1955) 1–22.

[Bro1955-2] W.P. Brown, Generalized matrix algebras, Canad. J. Math. 7 (1955) 188–190.

[Bru1998] J. Brundan, Lowering operators for GL(n) and quantum GL(n), in Group representations: cohomology, group actions and topology (Seattle, WA, 1996), 95-114, Proc. Sympos. Pure Math., 63, Amer. Math. Soc., Providence, RI, 1998.

[Bru1998-2] J. Brundan, Modular branching rules and the Mullineux map for Hecke algebras of type A, Proc. London Math. Soc. (3) 77 no. 3 (1998) 551-581.

[BSa1972] E. Brieskorn and K. Saito, Artin-Gruppen und Coxeter-Gruppen, Invent. Math. 17, (1972), 245-271.

[BSc1978] J. Bernstein and O. Schwarzman, Chevalley's theorem for complex crystallographic Coxeter groups, Funktsional. Anal. i Prilhozen. 12 (1978), 79-80 [Russian], English translation: Funct. Anal. Appl. 12 (1978), 308-309 (1979).

[BSc2006] J. Bernstein and O. Schwarzman, Complex crystallographic Coxeter groups and affine root systems, J. Nonlinear Math. Physics, 13 no. 2 (2006), 163-182.

[BSc2006-2] J. Bernstein and O. Schwarzman, Chevalley's theorem for the complex crystallographic groups, J. Nonlinear Math. Physics, 13 no. 3 (2006), 323-351.

[BSe1958] A. Borel and J.-P. Serre, Le Théorème de Riemann-Roch (d’apres Grothendieck), Bull. Soc. Math. France 68 (1958), 97–136.

[BSh1963] Z. Borevich and I. Shafarevich, Number theory, Moscow, 1963.

[BSo9703001] N. Bergeron and F. Sottile, Schubert polynomials, the Bruhat order, and the geometry of flag manifolds, Duke Math. J. 95 (1998) 373–423, MR1652021, arXiv:9703001.

[BSR1998] G. Benkart, C. Lee Shader, and A. Ram, Tensor representations of orthosymplectic Lie color algebras, J. Pure Appl. Algebra, 130 (1998), 1–48.

[BSt2010] J. Brundan and C. Stroppel, Highest weight categories arising from Khovanov's diagram algebra II: Koszulity, Transform. Groups 15 (2010), no. 1, 1-45.

[BSt2011] J. Brundan and C. Stroppel, Highest weight categories arising from Khovanov's diagram algebra I: cellularity, Mosc. Math. J. 11 (2011), 685-722.

[BSt2011-2] J. Brundan and C. Stroppel, Highest weight categories arising from Khovanov's diagram algebra III: category 𝒪, Represent. Theory 15 (2011), 170-243.

[BSt2012] J. Brundan and C. Stroppel, Highest weight categories arising from Khovanov's diagram algebra IV: the general linear supergroup, J. Eur. Math. Soc. (JEMS) 14 (2012), no. 2, 373-419.

[BtD1985] T. Bröcker and T. tom Dieck, Representations of compact Lie groups, Graduate Texts in Mathematics 98, Springer-Verlag, New York-Berlin, 1985.

[BTi1966] F. Bruhat and J. Tits, 4 notes in Comptes Rendus vol. 263 (1966), 766-768; 822-825; 867-869.

[BTi1967] F. Bruhat and J. Tits, Groupes algèbriques simples sur un corps local, in Proceedings of a Conference on Local Fields, Springer (1967).

[Bti1972] F. Bruhat and J. Tits, Groupes réductifs sur un corps local: I. Données radicielles valuées, Publications Mathématiques de l'Institut des Hautes Études Scientifiques, no. 41 (1972).

[Bum1998] D. Bump, Automorphic forms and representations, Cambridge University Press, ISBN-13: 978-0521658188

[Bur1955] W. Burnside, Theory of Groups of Finite Order, 2nd ed., Dover 1955.

[But1994] L.M. Butler, Subgroup lattices and symmetric functions, Memoirs Amer. Math. Soc., 539, 112. (1994).

[BWa1988] A. Björner, M. Wachs, Generalized quotients in Coxeter groups, Trans. Amer. Math. Soc. 308 (1) (1988) 1–37.

[BWe1989] J. Birman, and H. Wenzl, Braids, link polynomials, and a new algebra, Trans. AMS 313 (1989), 249-273.

[Car1972] R.W. Carter, Conjugacy classes in the Weyl group, Compositio Math. 25 (1972), 1-59.

[Car1985] R.W. Carter, Finite groups of Lie Type: Conjugacy Classes and Complex Characters, J. Wiley and Sons, New York, 1985.

[CCh1206622] R. Carter and Y. Chen, Automorphisms of affine Kac-Moody groups and related Chevalley groups over rings, J. Algebra, 155, 1993, No. 1, 44–94, MR1206622 (94e:17032).

[CFo1968] C.W. Curtis and T.V. Fossum, On the Centralizer Rings and Characters of Representations of Finite Groups, Mathematische Zeitschrift, 104 (1968), 402-406.

[CGi1433132] N. Chriss and V. Ginzburg, Representation theory and complex geometry, Birkhäuser Boston, Inc., Boston, MA, 1997. x+495 pp. ISBN: 0-8176-3792-3, MR1433132 and MR2838836.

[CGi1997] N. Chriss and V. Ginzburg, Representation Theory and Complex Geometry, Birkhäuser, Boston, 1997.

[CGu2010] G. Chinta and P. Gunnells, Constructing Weyl group multiple Dirichlet series, J. Amer. Math. Soc. 23 (2010), no. 1, 189-215. MR2552251

[Cha1976] B. Chang, Decomposition of Gelfand-Graev characters of GLn(q), Communications in Algebra 4 (1976), 375–401.

[Che1958] C. Chevalley, Le classes d’equivalence rationelle, I, II, Seminaire C. Chevalley, Anneaux de Chow et applications (mimeographed notes), Paris, 1958.

[Che1974888] I.V. Cherednik, Double affine Hecke algebras and difference Fourier transforms, Invent. Math. 152 (2003), no. 2, 213-303, MR1974888, arXiv:math.QA/0110024.

[Che1979] I.V. Cherednik, On some S-matrices, connected with abelian varieties, Doklady AN SSSR, 249, No. 5 (1979) 1095.

[Che1982] I.V. Cherednik, Teor. Math. Phys., 1982, p.315 (in Russian).

[Che1984] I.V. Cherednik, Factorized particles on a half-line and root systems, Theor. Math. Phys. 61 No. 1 (1984) 35.

[Che1986] I.V. Cherednik, On R-matrix quantization of formal loop groups. Group theoretic methods in physics, Proceedings of the 3rd Int. Sem. [in Russian], Nauka, Moscow 1986 (VNU Publ. B.V., 1986).

[Che1986-2] I.V. Cherednik, On special bases of irreducible representations of the degenerated affine Hecke algebra, Funktsion. Anal. Prilozhen., 20, No. 1, 87-88 (1986).

[Che1986-3] I.V. Cherednik, Dokl. Akad. Nauk SSSR, 291, No. 1, 49-53 (1986).

[Che1986-4] I.V. Cherednik, Funkts. Anal. Prilozhen., 20, No. 1, 69-70 (1986).

[Che1987] I.V. Cherednik, A new interpretation of Gel’fand-Tzetlin bases, Duke Math. J. 54 (1987), 563–577.

[Che1987-2] I.V. Cherednik, An analogue of the character formula for Hecke algebras, Funct. Anal. Appl. 21 no. 2 (1987), 172–174.

[Che1989] I.V. Cherednik, Generalized braid groups and local r-matrix systems, Doklady Akad. Nauk SSSR, 307, No. 1, 27-34 (1989).

[Che1989] I.V. Cherednik, Quantum groups as hidden symmetries of classic representation theory, Proceed. of 17th Int. Conference on differential geometric methods in theoretical physics, (Chester, 1988), World Scient. (1989) 47.

[Che1991] I. Cherednik, Monodromy representations for generalized Knizhnik-Zamolodchikov equations and Hecke algebras, Publ. RIMS, Kyoto Univ. 27 (1991), 711–726.

[Che1991-2] I. Cherednik, A unification of Knizhnik-Zamolodchikov and Dunkl operators via affine Hecke algebras, Invent. Math. 106 (1991), 411-431. MR 93b:17040

[Che1991-3] I.V. Cherednik, Affine extensions of Knizhnik-Zamolodchikov equations and Lusztig's isomorphisms, in: 'Special Functions'. ICM-90 Satellite Conference Proceedings, Eds. M. Kashiwara and T. Miwa, Springer (1991), 63-77.

[Che1991-4] I.V. Cherednik, Integral solutions of trigonometric Knizhnik-Zamolodchikov equations and Kac-Moody algebras, Publ. RIMS 27 (1991), 727-744.

[Che1992] I.V. Cherednik, Double affine Hecke algebras and Khniznik-Zamolodchikov equations and Macdonalds operators, Int. Math. Res. Notices 9 (1992) 171-180.

[Che1992-2] I.V. Cherednik, Quantum Knizhnik-Zamolodchikov equations and affine root systems, Commun. Math. Phys. 150 (1992), 109-136.

[Che1993] I.V. Cherednik, The Macdonald constant-term conjecture, Int. Math. Res. Notices 6 (1993), 165-177.

[Che1994] C. Chevalley, Sur les decompositions cellulaires des espaces G/B, in Algebraic Groups and their Generalizations: Classical Methods, W. Haboush and B. Parshall eds., Proc. Symp. Pure Math., Vol. 56 Pt. 1, Amer. Math. Soc. (1994), 1–23.

[Che1994-2] I.V. Cherednik, Induced representations of double affine Hecke algebras and applications, Math. Res. Lett. 1 (1994), 319-337.

[Che1994-3] I.V. Cherednik, Integration of quantum many-body problems by an affine Knizhnik-Zamolodchikov equations, Preprint RIMS-776 (1991), Adv. Math. 106 (1994), 65-95.

[Che1995] I. Cherednik, Double affine Hecke algebras and Macdonald’s conjectures, Ann. of Math. 141 (1995), 191-216. MR 96m:33010

[Che1995-2] I.V. Cherednik, Macdonald's evalutation conjectures and difference Fourier transform, Invent. Math. 122 (1995), 119-145.

[Che1995-3] I.V. Cherednik, Nonsymmetric Macdonald polynomials, Int. Math. Res. Notices 10 (1995), 483-515.

[Che1995-4] I.V. Cherednik, Elliptic quantum many-body problem and double affine Knizhnik-Zamolodchikov equation, Commun. Math. Phys. 169 No. 2 (1995), 441-461.

[Che1995-5] I.V. Cherednik, Difference-elliptic operators and root systems, IMRN 1 (1995), 43-59.

[Che1996] I.V. Cherednik, Intertwining operators for double affine Hecke algebras, Preprint RIMS-1079 (1996), Selecta Math.

[Cho0078006] W.-L. Chow, Algebraic varieties with rational dissections, Proc. Nat. Acad. Sci. U.S.A. 42 (1956) 116–119, MR0078006.

[CIK1971] C.W. Curtis, N. Iwahori and R. Kilmoyer, Hecke Algebras and Characters of Parabolic Type of Finite Groups with (B,N)-pairs, Institut des Hautes Études Scientifiques, Publications Mathématiques, 40 (1971), 81-116.

[Cli1937] A. H. Clifford, Representations induced in an invariant subgroup, Ann. of Math. 38 (1937), 533-550.

[CMc1993] D. Collingwod; W. McGovern, Nilpotent Orbits in Semisimple Lie Algebras, Van Nostrand Reinhold, New York, 1993.

[CMS1995] R.W. Carter, I.G. Macdonald, G. Segal, Lectures on Lie groups and Lie algebras, London Mathematical Society Student Texts 32, Cambridge University Press, Cambridge, 1995.

[Coh1976] A.M. Cohen, Finite complex reflection groups, Ann. Scient. Ec. Norm. Sup. 4, t.9. (1976), 379-436.

[Con1986] A. Connes, Noncommutative differential geometry, Extract Publ. Math., I.H.E.S., 62, 1986.

[Cox1962] H.S.M. Coxeter, The Symmetry Groups of The Regular Complex, Archiv. Math. 13 (1962) pp. 86-97.

[Cox1967] H.S.M. Coxeter, Finite Groups Generated by Gnitary Gefelctions, Hamburg Math. Abh., 31 (1967) 125-135.

[Cox1974] H.S.M. Coxeter, Regular Complex Polytopes, Cambridge Univ. Press, (1974).

[CPr1994] V. Chari and A. Pressley, A Guide to Quantum Groups, Cambridge University Press, Cambridge, 1994. MR1358358

[CPr1996] V. Chari and A. Pressley, Quantum affine algebras and affine Hecke algebras, Pacific J. Math. 174 (1996), no. 2, 295–326.

[CPS1988] E. Cline, B. Parshall, L. Scott, Finite dimensional algebras and highest weight categories, J. Reine Angew. Math. 391 (1988) 85–99.

[CPZ0905.1341] B. Calmès, V. Petrov, K. Zainoulline, Invariants, torsion indeices and oriented cohomology of complete flags, arxiv:0905.1341.

[CRe1961] C.W. Curtis and I. Reiner, Representation Theorey of Finite Groups and Associative Algebras, Wiley-Interscience, New York, 1961.

[CRe1981] C.W. Curtis and I. Reiner, Methods of Representation Theorey - With Applications to Finite Groups and Orders, Wiley-Interscience, New York, 1981.

[CRe1987] C.W. Curtis and I. Reiner, Methods of Representation Theorey - With Applications to Finite Groups and Orders, Vols. I and II, Wiley-Interscience, New York, 1987.

[CRe1988] C. W. Curtis and I. Reiner, Representation Theory of Finite groups and Associative Algebras, Wiley, 1988.

[Cri1997] J. Crisp, Ph.D. Thesis, University of Sydney, 1997.

[CSh1999] C. Curtis and K. Shinoda, Unitary Kloosterman sums and the Gelfand-Graev representation of GL2, Journal of Algebra 216 (1999), 431–447.

[CSM1995] R. Carter, G. Segal, I.G. Macdonald, Lectures on Lie Groups and Lie Algebras, London Math. Soc. Stud. Texts, Vol. 32, Cambridge Univ. Press, Cambridge, 1995.

[Cur1960] C.W. Curtis, On projective representations of certain finite groups, Proc. Amer. Math. Soc., 11 (1960), 852-860.

[Cur1980] C. W. Curtis, Truncation and duality in the character ring of a finite group of Lie type, J. Algebra, 62, 320-332 (1980).

[Cur1988] C. Curtis, A further refinement of the Bruhat decomposition, Proc. Amer. Math. Soc. 102 no. 1 (1988) 37–42.

[Cur1988-2] C. W. Curtis, Representations of Hecke algebras, Orbites unipotentes et reprsentations, I. Astrisque 168 (1988), 13-60.

[CWi2011] S. Corteel and L. Williams, Tableaux combinatorics for the asymmetric exclusion process and Askey-Wilson polynomials, Duke Math. J. 159 (2011) 385-415; International Mathematics Research Notices, 2007, article ID mm055.

[Dad1977] E. Dade, Characters of groups with normal extra special subgroups, Math. Z. 152 (1977), 1–31.

[dAl2009] J. de Gier and A. Nichols, The two-boundary Temperley-Lieb algebra, J. Algebra 321 (2009), no. 4, 1132–1167. MR2489894

[Dau2012] Z. Daugherty, Degenerate two-boundary centralizer algebras, Pacific J. Math. 258 (2012), no. 1, 91-142. MR2972480 arXiv:1007.3950

[Del1972] P. Deligne, Les immeubles des groupes de tresses généralisés, Invent. Math. 17, (1972), 273-302.

[Del1977] P. Deligne, Cohomologie Etale, Lect. Notes Math., Vol. 569, Springer-Verlag, Berlin-New York (1977).

[Del1980] P. Deligne, La Conjectture de Weil. II, Publ. Math. IHES 52 (1980), 137-252.

[Dem1965] M. Demazure, Schémas en groupes réductifs, Bulletin de la S.M.F. 93 (1965), 369–413.

[Dem1974] M. Demazure, Désingularisation des variétés de Schubert généralisées, Ann. Sci. École Norm. Sup. 7 (1974), 53–88.

[Dem1974-2] M. Demazure, Une nouvelle formule des characteres, Bull. Sc. Math. 98, (1974) 163-172.

[Deo1985] V.V. Deodhar, On some geometric aspects of Bruhat orderings. I. A finer decomposition of Bruhat cells, Invent. Math. 79 (1985) 499-511.

[dEs2005] J. de Gier and F.H.L. Essler, Bethe Ansatz solution of the asymmetric exclusion process with open boundaries, Phys. Rev. Lett. 95 (2005), 240601, 4pp.

[Dia1997] P. Diaconis, Lecture at the Workshop on Representation Theory and Symmetric Functions, Mathematical Sciences Research Institute, Berkeley, April 1997.

[Die1967] H. Dieudonné, Treatise on Analysis, Vol. II, Academic Press (1967).

[Dix1994] J. Dixmier, Enveloping algebras, Amer. Math. Soc. 1994; originally published in French by Gauthier-Villars, Paris 1974 and in English by North Holland, Amsterdam 1977.

[Dix1996] J. Dixmier, Enveloping algebras, Graduate Studies in Mathematics 11, American Mathematical Society, Providence, RI, 1996. ISBN: 0-8218-0560-6, MR1393197 (97c:17010)

[Dix1977] J. C. Dixmier, Enveloping Algebras, Elsevier (1977).

[DJa1986] R. Dipper and G. James, Representations of Hecke algebras of general linear groups, Proc. London Math. Soc. (3) 52 (1986), no. 1, 20-52.

[DJa1987] R. Dipper and G.D. James, Blocks and idempotents of Hecke algebras of general linear groups, Proc. London Math. Soc. (3) 54 (1987) 57–82.

[DJa1992] R. Dipper and G. James, Representations of Hecke algebras of type Bn, J. Alg. 146 (1992), no. 2, 454-481.

[DJM1995] R. Dipper, G.D. James and G.E. Murphy, Hecke algebras of type Bn at roots of unity, Proc. London Math. Soc. (3) 70 (1995) 505–528.

[DKa1990] C. DeConcini and V. Kac, Representations of quantum groups at roots of 1, in Operator algebras, Unitary representations enveloping algebras, and invariant theory, Progr. Math. 92 (1990) 471-506.

[DKa1991] C. de Concini and V.G. Kac, Representations of quantum groups at roots of 1, in Modern Quantum Field Theory (Bombay, 1990), pp. 333–335, World Scientific Publishing, River Edge, NJ, USA, 1991.

[DKa1992] C. DeConcini and V. Kac, Representations of quantum groups at roots of 1: reduction to the exceptional case, Infinite analysis, Part A, B (Kyoto, 1991), 141-149, Adv. Ser. Math. Phys., 16, 16 World Scientific Publishing, River Edge, NJ 1992.

[DKL1995] G. Duchamp, D. Krob, A. Lascoux, B. Leclerc, T. Scharf, and J.-Y. Thibon, Euler-Poincaré characteristic and polynomial representations of Iwahori-Hecke algebras, Publ. Res. Inst. Math. Sci. 31 (1995), 179-201.

[DLu1976] P. Deligne and G. Lusztig, Representations of reductive groups over finite fields, Ann. of Math. (2) 103 (1976), 103–161.

[DMi1991] F. Digne and J. Michel, Representations of finite groups of Lie type, London Mathematical Society Student Texts 21, Cambridge University Press, Cambridge, 1991.

[dNP2005] J. de Gier, A. Nichols, P. Pyatov and V. Rittenberg, Magic in the spectra of the XXZ quantum chain with boundaries at Δ=0 and Δ=-1/2 Nucl. Phys. B 729 (2005), 387-418.

[Don1993] S. Donkin, On tilting modules for algebraic groups, Math. Zeit. 212 (1993), 39-60.

[DPr1981] C. DeConcini and C. Procesi, Symmetric functions, conjugacy classes and the flag variety, Invent. Math. 64 (1981), 203-219.

[dPy2004] J. de Gier and P. Pyatov, Bethe Ansatz for the Temperley-Lieb loop model with open boundaries, J. Stat Mech. Theory Exp. 2004, no. 3, 002, 27 pp. (electronic)

[DRaPREP] Z. Daugherty and A. Ram, Representations of two-boundary Temperley-Lieb algebras, in preparation.

[Dri1985] V. Drinfeld, DAN SSSR, 1985, 283, N 5, 1060-1064 (in Russian).

[Dri1986] V.G. Drinfeld, Degenerate affine Hecke algebras and Yangians, Funct. Anal. Appl. 20 (1986), 58-60.

[Dri1986-2] V.G. Drinfel'd, Degenerate affine Hecke algebras and Yangians, Funktsion. Anal. Prilozhen., 20, No. 1, 69-70 (1986).

[Dri1986-3] V. Drinfeld, Talk at ICM-86, Berceley, 1986.

[Dri1987] V.G. Drinfeld, Quantum Groups, Vol. 1 of Proceedings of the International Congress of Mathematicians, Berkley, California USA, 1986, Academic Press, 1987, pp. 798-820.

[DRi1989] V. Dlab, C. Ringel, A construction for quasi-hereditary algebras, Compositio Math. 70 (1989) 155–175.

[Dri1989-2] V.G. Drinfeld, Quasi-Hopf algebras and Knizhnik-Zamolodchikov equations, Problems of modern quantum field theory (Alushta, 1989), 1–13, Res. Rep. Phys., Springer 1989

[Dri1990] V.G. Drinfel'd, On almost cocommutative Hopf algebras, Leningrad Math. J. 1 (1990) 321-342. MR1025154

[DRV1105.4207] Z. Daugherty, A. Ram, R. Virk, Affine and graded BMW algebras: The center, arXiv:1105.4207

[DRV1205.1852v1] Z. Daugherty, A. Ram and R. Virk, Affine and degenerate affine BMW algebras: Actions on tensor space, arXiv:1205.1852v1

[Dun1989] C.F. Dunkl, Differential-difference operators associated to reflection groups, Trans. AMS. 311 (1989) 167-183.

[DWa2000] W. Doran, D. Wales, The partition algebra revisited, J. Algebra 231 (2000) 265–330.

[Dye1962] E. Dyer, Relations between cohomology theories, mimeographed notes of the Colloquium on Algebraic Topology, Aarhus, 1962, pp. 89-93, in J.F. Adams, Algebraic Topology: A Student's Guide, Cambridge University Press, 1972.

[EKi1979] N. El-Samra and R. C. King, Dimensions of irreducible representations of the classical Lie groups, J. Phys. A: Math. Gen. 12 (1979), 2317-2328.

[EKi1993] P. Etingof and A. Kirillov Jr., Representations of affine Lie algebras, parabolic equations, and Lamé functions, Duke Math. J., (1993).

[EKi1995] P. Etingof and A. Kirillov Jr., Representation-theoretic proof of the inner product and symmetry identities for Macdonald's polynomials, Compositio Mathematica (1995).

[EMi1997] S. Evens and I. Mirković, Fourier transform and the Iwhahori-Matsumoto involution, Duke Math. J. 86 (1997), 435-464.

[Eno2006] N. Enomoto, Classification of the irreducible representations of the affine Hecke algebra of type B2 with unequal parameters, J. Math. Kyoto Univ. 46 (2006) 259273. MR2284343 arXiv:math.RT/0505252

[Erd1996????] K. Erdmann, Decomposition numbers for symmetric groups and composition factors of Weyl modules, J. Algebra 180 (1996), 316-320.

[EWi2012] B. Elias and G. Williamson, The Hodge theory for Soergel bimodules, in preparation, November 2012.

[Eve1996] S. Evens, The Langlands classification for graded Hecke algebras, Proc. Amer. Math. Soc. 124 (1996), 1285–1290. MR 96g:22022

[Fad1984] L.D. Faddeev, Integrable models in (1+1)-dimensional quantum field theory, (Lectures in Les Houches, 1982), Elsevier Science Publishers B:V., 1984.

[Fan1949] K. Fan, On a theorem of Weyl concerning eigenvalues of linear transformations. I., Proc. Nat. Acad. Sci. USA 35 (1949), 652-655.

[Fan1951] K. Fan, Maximum properties and inequalities for the eigenvalues of completely continuous operators, Proc. Nat. Acad. Sci. USA, 37, (1951), 760-766.

[FFu1990] B.L. Feigin and D.B. Fuchs, Representations of the Virasoro algebra, Representation of Lie groups and related topics, Adv. Stud. Contemp. Math. 7, Gordon and Breach, New York, 1990, 465-554.

[FGr1998] S. Fomin and C. Greene, Noncommutative Schur functions and their applications, Discrete Mathematics, 193 no. 1 (1998), 179-200.

[FHa1991] W. Fulton and J. Harris, Representation theory, A first course, Graduate Texts in Mathematics 129, Springer-Verlag, New York, 1991, ISBN: 0-387-97527-6; 0-387-97495- 4, MR1153249 (93a:20069)

[FHa2003] J. Farina, T. Halverson, Character orthogonality for the partition algebra and fixed points of permutations, Adv. Applied Math. 31 (2003) 113–131.

[FJM0209126] B. Feigin, M. Jimbo, T. Miwa, E. Mukhin, and Y. Takeyama, Symmetric polynomials vanishing on the diagonals shifted by roots of unity, Int. Math. Res. Notices 2003 1015– 1034. MR1962013 arXiv:math/0209126

[FKi1988] E. Freitag, R. Kiehl, Etale cohomology and the Weil conjecture, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3 Folge, Band 13, Springer-Verlag, 1988.

[FLa1994] W. Fulton and A. Lascoux, A Pieri formula in the Grothendieck ring of a flag bundle, Duke Math. J. 76 (1994), 711–729.

[FLe1998] D. Fitzgerald, J. Leech, Dual symmetric inverse monoids and representation theory, J. Aust. Math. Soc. Ser. A 64 (1998) 345–367.

[FLO1999] O. Foda, B. Leclerc, M. Okado, J.-Y. Thibon, T. Welsh, Branching functions of An-1(1) and Jantzen-Seitz problem for Ariki-Koike algebras, Adv. Math. 141 (1999), 322-365.

[FMu2001] E. Frenkel and E. Mukhin, Combinatorics of q-characters of finite-dimensional representations of quantum affine algebras, Comm. Math. Phys. 216 (2001) 23-57. MR1810773

[FOd1998] B. Feigin and A. Odesskii, Vector bundles on an elliptic curve and Sklyanin algebras, Topics in quantum groups and nite-type invariants, Amer. Math. Soc. Transl. Ser. 2 185 (1998) 65-84.

[Fom1997] S. Fomin, personal communication, 1997.

[FRe1991] I.B. Frenkel and N.Yu. Reshetikhin, Quantum affine algebras and holonomic difference equations, Commun. Math. Phys. (1991).

[Fro1900] F.G. Frobenius, Über die Charactere der symmetrischen Gruppe, Sitzungsberichte der Königlich, Preussischen Akademie der Wissenschaften zu Berlin (1990), 516-534; reprinted in Gessamelte Abhandlungen 3, 148-166.

[FRS1989] K. Fredenhagen, K.H. Rehren and B. Schroer, Superselection sectors with braid group statistics and exchange algebras, Commun. Math. Phys. 125 (1989) 201.

[FRT1954] G.S. Frame, G. de B. Robinson, and R.M. Thrall, The hook graphs of Sn, Canadian J. Math. 6 (1954), 316-324.

[FTa1986] L. Faddeev and L. Takhtajan, Liouville model on the lattice, preprint Universite Paris VI, June 1985; Lect. Notes in Physics, 1986, 246, 166-179.

[FTa1987] L. Faddeev and L. Takhtajan, Hamiltonian Methods in the Theory of Solitons, Springer-Verlag, 1987.

[Ful1644323] W. Fulton, Intersection Theory, Second edition, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], 2. Springer-Verlag, Berlin, 1998. xiv+470 pp. ISBN: 3-540-62046-X; 0-387-98549-2, MR1644323.

[Ful1969] W. Fulton, Algebraic Curves, New York, Benjamin, 1969.

[Ful1984] W. Fulton, Intersection Theory, Ergebnisse der Mathematik (3) 2, Springer-Verlag, Berlin-New York, 1984.

[Ful1997] W. Fulton, Young tableaux: with applications to representation theory and geometry, London Math. Soc. Student Texts, 35, Cambridge Univ. Press, Cambridge (1997).

[FYL1985] P. Freyd, D. Yetter, W.B.R. Lickorish, K. Millett, A. Ocneanu and J. Hoste, A new polinomial invariant of knots and links, Bull. Amer. Math. 300., 1985, 12, N 2, p.239-246.

[Gan1206.0528] N. Ganter, The elliptic Weyl character formula, arXiv:1206.0528.

[Gan2010] N. Ganter, Notes on the Weyl character formula and elliptic cohomology, Univ. of Melbourne, 2010.

[Gar1969] F.A. Garside, The braid group and other groups, Quart. J. Math. Oxford, 2 Ser. 20 (1969), 235-254.

[Gar1980] H. Garland, The arithmetic theory of loop groups, Publ. Math. IHES 52 (1980), 181–312.

[Gar1990] A. Garsia, Combinatorics of the free Lie algebra and the symmetric group, Analysis, et cetera, Academic Press, Boston, MA, 1990, 309-382.

[Gar1995] H. Garland, A Cartan decomposition for p-adic loop groups, Math. Ann. 302 (1995), 151–175.

[Gas1952] W. Gaschütz, Uber den Fundamentalsatz von Maschke zur Darstellungstheorie der endlichen Gruppen, Math. Zeit. 56 (1952), 376-387.

[Gec1998] M. Geck, Representations of Hecke algebras at roots of unity, Séminaire Bourbaki, Vol. 1997/98, Astérisque 252 (1998), Exp. No. 836, 3, 33–55.

[Gec2004] M. Geck, Computing Kazhdan-Lusztig cells for unequal parameters, J. Algebra 281 (2004) 342–365, MR2091976.

[Gel1950] I. M. Gelfand, Center of the infinitesimal group ring, Mat. Sb., Nov. Ser. 26 (68) (1950) 103-112. Zbl. 35:300.

[Gel1971] I. M. Gelfand, The cohomology of infinite dimensional Lie algebras; some questions in integral geometry, in Actes, Congrès intern. math., 1970, Vol. 1, pp. 95-111, Gauthier-Villars, Paris, 1971.

[GGK1967] C. Gardner, J. Green, M. Kruskal and R. Miura, Phys. Rev. Lett., 1967, v. 19, N 19, p. 1095-1097.

[GGr1962] I. M. Gelfand and M.I. Graev, Construction of irreducible representations of simple algebraic groups over a finite field, Soviet Mathematics Doklady 3 (1962), 1646–1649.

[GHa0411155] F. Goodman and H. Hauschild, Affine Birman-Wenzl-Murakami algebras and tangles in the solid torus, Fundamenta Mathematicae 190 (2006), 77-137. MR2232856 arXiv:math.QA/0411155

[GHJ1989] F. Goodman, P. de la Harpe, V.F.R. Jones, Coxeter Graphs and Towers of Algebras, Mathematical Sciences Research Institute Publications, vol. 14, Springer-Verlag, New York, 1989. MR0999799

[GHL1996] M. Geck, G. Hiss, F. Lübeck, G. Malle, and G. Pfeiffer, CHEVIE – A system for computing and processing generic character tables for finite groups of Lie type, Weyl groups and Hecke algebras, AAECC, 7 (1996), 175-210.

[GIM2000] M. Geck, L. Iancu and G. Malle, Weights of Markov traces and generic degrees, Indag. Math. N.S. 11 (2000), 379–397.

[Gin1987] V. Ginzburg, “Lagrangian” construction for representations of Hecke algebras, Adv. in Math. 63 (1987), 100-112.

[Gin1987-2] V. Ginzburg, Geometrical aspects of representation theory, Proc. Int. Cong. Math. (Berkeley 1986), Vol 1, Amer. Math. Soc. 1987, 840-848.

[GJo1981] O. Gabber and A. Joseph, On the Bernstein-Gelfand-Gelfand resolution and the Duflo sum formula, Compositio Math. 43 (1981), 107–131.

[GKa1962] S. G. Gindikin and F. I. Karpelevic, Plancherel measure of Riemannian symmetric spaces of non-positive curvature, Soviet Math. 3 (1962), 962-965.

[GKa2004] D. Gaitsgory and D. Kazhdan, Representations of algebraic groups over a 2-dimensional local field, Geom. Funct. Anal. 14 no. 3 (2004), 535–574.

[GKM1489894] M. Goresky, R. Kottwitz, R. MacPherson, Equivariant cohomology, Koszul duality, and the localization theorem, Invent. Math. 131 (1998), no. 1, 25–83, MR1489894.

[GKV9505012] V. Ginzburg, M. Kapranov and E. Vasserot, Elliptic algebras and equivariant elliptic cohomology I, arXiv:q-alg/9505012.

[GLa1997] M. Geck and S. Lambropoulou, Markov traces and knot invariants related to Iwahori-Hecke algebras of type B, J. Reine Angew. Math. 482 (1997), 191–213.

[GLe1996] J. Graham and G. Lehrer, Cellular algebras, Invent. Math. 123 (1996), 1-34.

[GLe2003] J. Graham and G. Lehrer, Diagram algebras, Hecke algebras and decomposition numbers at roots of unity, Ann. Sci. École Norm. Sup. (4) 36 (2003) 479-524. MR2013924

[GLe2004] J. Graham and G. Lehrer, Cellular and diagram algebras in representation theory, in Representation theory of algebraic groups and quantum groups, Adv. Stud. Pure Math. 40 Math. Soc. Japan, Tokyo (2004) 141–173. MR2074593 (2005i:20005)

[GLi2002] S. Gaussent and P. Littelmann, LS galleries, the path model and MV cycles, Duke Math. J. 127 no. 1 (2002), 137-159.

[GLi2005] S. Gaussent and P. Littelmann, LS galleries, the path model, and MV cycles, Duke Math. J. 127 no. 1 (2005), 35–88.

[GMa1968] M. Goreskii and R. MacPherson, Intersectio homology theory, Topology, 19, No. 2, 135-162 (1980).

[GMa1988] A. M. Garsia and T. J. Maclarnan, Relations between Young’s natural and the Kazhdan-Lusztig representations of Sn, Adv. in Math. 69 (1988), no. 1, 32-92.

[GMo0612064] F. Goodman and H. Mosley, Cyclotomic Birman-Wenzl-Murakami algebras I: Freeness and realization as tangle algebras, J. Knot Theory and Its Ramifications, 18, no. 8, (2009) 1089-1127. MR2554337 arXiv:math/0612064.

[GMo0612065] F. Goodman and H. Mosley, Cyclotomic Birman-Wenzl-Murakami algebras II: Admissibility relations and freeness, Algebr. Represent. Theory 14 (2011), no. 1, 139. MR2763289 arXiv:math.QA/0612065

[God1952] R. Godement, A theory of spherical functions I, Trans. A.M.S. vol. 73 (1952), 496-556.

[God1957] R. Godement, Introduction aux travaux de A. Selberg, Sém. Bourbaki (1957), Exp. 144.

[Gon2011] J. González-Meneses, Basic results on braid groups, Ann. Math. Blaise Pascal 18 (2011) 15–59. MR2830088, arXiv:1010.0321.

[Goo0801.0306] F. M. Goodman, Cellularity of cyclotomic Birman-Wenzl-Murakami algebras, J. Algebra 321 (2009) 3299–3320. MR2510050 arXiv:0801.0306.

[Goo0905.4253] F. Goodman, Admissibility conditions for degenerate cyclotomic BMW algebras, Comm. Algebra 39 (2011), no. 2, 452–461. MR2773313 arXiv:0905.4253

[Goo0905.4258] F. Goodman, Comparison of admissibility conditions for cyclotomic Birman-Wenzl-Murakami algebras, J. Pure and Applied Algebra 214 (2010), 2009–2016. MR2645333 arXiv:0905.4258

[GPr1992] A. M. Garsia and C. Procesi, On certain graded Sn-modules and the q-Kostka polynomials, Adv. Math. 94 (1992), no. 1, 82–138.

[GRa0405333] S. Griffeth and A. Ram, Affine Hecke algebras and the Schubert calculus, European J. Combinatorics 25 (2004) 1263-1283, MR2095481, arXiv:0405333.

[Gra9908172] W. Graham, Positivity in equivariant Schubert calculus, Duke Math. J. 109 (2001) 599-614. MR1853356 and arXiv:9908172.

[Gre1955] J.A. Green, The characters of the finite general linear groups, Trans. Amer. Math. Soc. 80 (1955), 402-447.

[Gre1970] J.A. Green, On the Steinberg Characters of Finite Chevalley Groups, Mathematische Zeitschrift, 117 (1970), 272-288.

[Gre1980] J.A. Green, Polynomial representations of GLn, Lecture Notes in Mathematics 830, Springer-Verlag, New York, 1980.

[GRe1985] Shuffles of permutations and the Kronecker product, Graphs and Combinatorics 1, 217-263 (1985).

[GRe1986] A. Garsia and J. Remmel, q-counting rook configurations and a formula of Frobenius, J. Combin. Theory Ser. A 41 (1986), 246-275.

[GRe1989] A. Garsia, C. Reutenauer, A decomposition of Solomon’s descent algebra, Adv. Math. 77 (2) (1989) 189–262.

[GRe2005] A. Garsia and J. Remmel, Breakthroughs in the theory of Macdonald polynomials, Proc. Nat. Acad. Sci. 102 no. 11 (2005) 3891-3894.

[GRo0703639v1] S. Gaussent and G. Rousseau, Kac-Moody groups, hovels and Littelmann’s paths, preprint 2007, arXiv:math.GR/0703639v1.

[Gro1958] A. Grothendieck, Sur quelques propriétés fondamentales en théorie des intersections, Séminaire Claude Chevalley 3 (1958), Exposé No. 4, 36 p.

[Gro9907129] I. Grojnowski, Affine 𝔰𝔩p controls the representation theory of the symmetric group and related Hecke algebras, arXiv:math.RT/9907129

[Gro1994] I. Grojnowski, Delocalised equivariant elliptic cohomology, preprint 1994, appeared in Elliptic cohomology 114-121, London Math. Soc. Lecture Note Ser. 342 Cambridge Univ. Press, Cambridge, 2007, available from http://www.dpmms.cam.ac.uk/~groj/papers.html.

[Gro1994-2] I. Grojnowski, Representations of affine Hecke algebras (and affine quantum GLn) at roots of unity International Math. Res. Notices 5 (1994), 215-217.

[Gro1996] I. Grojnowski, Jantzen filtrations, unpublished notes, 1996.

[Gro2006] C. Grood, The rook partition algebra, J. Combin. Theory Ser. A 113 (2006), no. 2, 325–351.

[GTs1950] I.M. Gelfand and M.L. Tsetlin, Finite-dimensional representations of the group of unimodular matrices, Doklady Akad. Nauk SSSR (N.S.) 71 (1950), 825–828.

[GTs1950-2] I.M. Gelfand and M.L. Tsetlin, Finite-dimensional representations of groups of orthogonal matrices, Doklady Akad. Nauk SSSR (N.S.) 71 (1950), 1017–1020.

[Gui2008] J. Guilhot, Kazhdan-Lusztig cells in affine Weyl groups with unequal parameters, PhD Thesis, Université Claude Bernard-Lyon 1 and University of Aberdeen 2008, http://www.lmpt.univ-tours.fr/~guilhot/PhDf.pdf, arXiv:math/0702272.

[GUn1989] A. Gyoja and K. Uno, On the Semisimplicity of Hecke Algebras, J. Math. Soc. Japan 41 (1989), 75-79.

[GVa1835669] I. Grojnowski and M. Vazirani, Strong multiplicity one theorems for affine Hecke algebras of type A, Transformation Groups 6 (2001) 143-155. MR1835669

[GWa1989] A. Garsia and M. Wachs, Combinatorial aspects of skew representations of the symmetric group, J. Combin. Theory Ser. A 50 (1989), 47–81.

[GWa1998] R. Goodman, N. Wallach, Representations and invariants of the classical groups, Encyclopedia of Mathematics and its Applications, vol. 68, Cambridge University Press, Cambridge, 1998.

[GWa1990] R. Goodman and N. Wallach, Vector and Tensor Invariants: An Introduction to Complex Reductive Groups and their Representations, book in preparation, Chapter 5. Cohomology and Kostant's Theorem, preprint (1990).

[GWe1999] F. Goodman and H. Wenzl, Crystal bases of quantum affine algebras and affine Kazhdan-Lusztig polynomials, Int. Math. Res. Not. 5 (1999), 251-275.

[Gyo1986] A. Gyoja, A q-analogue of Young symmetrizer, Osaka J. Math. 23 (1986), no. 4, 841–852.

[Hai2275709] M. Haiman, Cherednik algebras, Macdonald polynomials and combinatorics, Proc. ICM, Madrid 2006, Vol. III, 843-872, MR2275709.

[Hal1958] P. Halmos, Finite Dimensional Vector Spaces, 2nd ed., Van Nostrand Reinhold, New York, 1958.

[Hal1995] T. Halverson, A q-rational Murnaghan-Nakayama rule, J. Combin. Theory Ser. A 71 (1995), 1-18.

[Hal1996] T. Halverson, Characters of the centralizer algebras of mixed tensor representations of GL(r,) and the quantum group Uq𝔤𝔩(r,), Pacific J. Math. 174 (1996), 359-410.

[Hal2001] T. Halverson, Characters of the partition algebras, J. Algebra 238 (2001) 502–533.

[Ham1962] M. Hamermesh, Group Theory with Applications to Physics, Addison-Wesley, Reading, Mass., 1962.

[Han1981] P. Hanlon, The fixed point partition lattices, Pacific J. Math. 96 (1981), 319-341.

[Här1673464] R. Häring-Oldenburg, The reduced Birman-Wenzl algebra of Coxeter type B, J. Algebra 213 (1999) 437–466. MR1673464

[Här1834081] R. Häring-Oldenburg, Cyclotomic Birman-Murakami-Wenzl algebras, J. Pure Appl. Alg. 161 (2001) 113–144. MR1834081

[Här9712030] R. Häring-Oldenburg, An Ariki-Koike like extension of the Birman-Murakami-Wenzl algebra, preprint 1998. arXiv:q-alg/9712030

[Har1958] Harish-Chandra, Spherical functions on a semi-simple Lie group I, Amer. J. Math. 80 (1958), 241-310.

[Har1966] Harish-Chandra, Discrete series for semi-simple Lie groups II, Acta. Math. 116 (1966), 1-112.

[Har1977] R. Hartshorne, Algebraic geometry, Graduate Texts in Mathematics 52, Springer-Verlag, New York-Heidelberg, 1977.

[Hay1990] T. Hayashi, q-analogues of Clifford and Weyl algebras—spinor and oscillator representations of quantum enveloping algebras, Communications in Mathematical Physics, vol. 127, no. 1, pp. 129–144, 1990.

[Hec1987] G.J. Heckman, Root systems and hypergeometric functions II, Comp. Math. 64 (1987), 353-373.

[Hec1991] G.J. Heckman, An elementary approach to the hypergeometric shift operators of Opdam, Invent. math. 103 (1991), 341-350.

[Hel1962] S. Helgason, Differential Geometry and Symmetric Spaces, Academic Press (1962).

[HHL0409538] J. Haglund, M. Haiman and N. Loehr, A Combinatorial Formula for Macdonald Polynomials, J. Amer. Math. Soc. 18 (2005), 735-761. MR2138143 arXiv:math.CO/0409538

[HHL0601693] J. Haglund, M. Haiman and N. Loehr, A combinatorial formula for non-symmetric Macdonald polynomials, Amer. J. Math. 130 no. 2 (2008), 359-383. arXiv:math.CO/0601693

[HHH0409305] M. Harada, A. Henriques, T. Holm, Computation of generalized equivariant cohomologies of Kac-Moody flag varieties, Adv. Math. 197 (2005), no. 1, 198-221, MR2166181, arXiv:0409305.

[Hig1955] D.G. Higman, Induced and procuded modules, Can. J. Math. 7 (1955), 490-508.

[Hir1995] F. Hirzebruch, Topological methods in algebraic geometry, Classics in Mathematics, Springer-Verlag, Berlin, 1995.

[HJo1969] S. Helgason and K. Johnson, The bounded spherical functions on symmetric spaces, Advances in Math. 3 (1969), 586-593.

[HKi0903.3936] J. Hornbostel and V. Kiritchenko, Schubert calculus for algebraic cobordism, J. Reine Angew. Math. 656 (2011) 59-85, MR2818856, arxiv:0903.3936.

[Hoe1974] P.N. Hoefsmit, Representations of Hecke algebras of finite groups with BN-pairs of classical type, PhD thesis, University of British Columbia, 1974.

[HOp1987] G.J. Heckman and E.M. Opdam, Root systems and hypergeometric functions I, Comp. Math. 64 (1987), 329-352.

[HOp1997] G.J. Heckman and E.M. Opdam, Harmonic analysis for affine Hecke algebras, in Current Developments in Mathematics, Intern. Press, Boston, 1996.

[HOp1997] G.J. Heckman and E.M. Opdam, Yang’s system of particles and Hecke algebras, Ann. of Math. (2) 145 (1997), 139–173. MR 99g:33052a

[Hor1962] A. Horn, Eigenvalues of sums of Hermitian Matrices, Pacific J. Math 12 (1962), 225-241.

[How1994] R. Howe, Hecke algebras and p-adic GLn, Representation theory and analysis on homogeneous spaces (New Brunswick, NJ, 1993), Contemp. Math. 177, Amer. Math. Soc., Providence, RI, 1994, 65-100.

[HPe1953] W. V. D. Hodge and D. Pedoe, Methods of Algebraic Geometry, vols I and II, Cambridge University Press, 1953.

[HRa1995] T. Halverson and A. Ram, Characters of algebras containing a Jones basic construction: the Temperley-Lieb, Okada, Brauer, and Birman-Wenzl algebras, Adv. Math. 116 (1995), 263–321. MR1363766

[HRa1996] T. Halverson and A. Ram, Murnaghan-Nakayama rules for characters of Iwahori-Hecke algebras of classical type, Trans. Amer. Math. Soc. 348 (1996), 3967–3995.

[HRa1998] T. Halverson and A. Ram, Murnaghan-Nakayama rules for characters of Iwahori-Hecke algebras of the complex reflection groups G(r,p,n), Canadian J. Math. 50 (1998), 167–192.

[HRa1999] T. Halverson and A. Ram, Bitraces for GLn(𝔽q) and the Iwahori-Hecke algebra of type An-1, Indagationes Mathematicae 10 (1999), 247–268.

[HSp1977] R. Hotta and T. Springer, A specialization theorem for certain Weyl group representations and an application to Green polynomials of unitary groups, Invent. Math. 41 (1977), 113-127.

[Hud1206.2514] T. Hudson, Thom-Porteous formulas in algebraic cobordism, Ph.D. Thesis, University of Essen, May 2012, arXiv:1206.2514.

[Hul1974] S.G. Hulsurkar, Proof of Verma’s conjecture on Weyl’s dimension polynomial, Invent. Math. 27 (1974), 45-52. MR 51:5788

[Hum1971] J.E. Humphreys, Modular representations of classical Lie algebras and semisimple groups, J. Algebra, 19 (1971), 51-79.

[Hum1972] J.E. Humphreys, Introduction to Lie Algebras and Representation Theory, Springer-Verlag, New York 1972.

[Hum1978] J.E. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics 9, Springer-Verlag, New York-Berlin, 1978.

[Hum1980] J.E. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics 9, Springer-Verlag, New York-Berlin (3rd printing) 1980.

[Hum1990] J.E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge Studies in Advanced Mathematics No. 29, Cambridge University Press, 1990.

[Hum1994] J. Humphreys, Introduction to Lie Algebras and Representation Theory, Graduate Texts in Mathematics, 9. Springer-Verlag, New York, 1994.

[HVe1973] J.E. Humphreys and D.-N. Verma, Projective modules for finite Chevalley groups, Bull. Amer. Math. Soc, 79 (1973), 467-468.

[HWa1989] P. Hanlon and D. Wales, On the decomposition of Brauer’s centralizer algebras, J. Algebra 121 (1989), 409-445.

[HWa1989-2] P. Hanlon and D. Wales, Eigenvalues connected with Brauer's centralizer algebras, J. Algebra, 121 (1989), 446-476.

[HZw1962] J. Hersch and B. P. Zwahlen, Evaluations par default pour une somme quelconque de valeurs propres γk d'un operateur C=A+B a l'aide de valeurs propres αi de A et Bj de, B. C. R. Acad. Sci. Paris 254 (1962), 1959-1961.

[Ian2001] L. Iancu, Markov traces and generic degrees in type Bn, J. Algebra 236, no. 2 (2001), 731–744.

[Ike1953] M. Ikeda, On a theorem of Gaschütz, Osaka Math. J. 5 (1953), 53-58.

[IMa1965] N. Iwahori, H. Matsumoto, On some Bruhat decomposition and the structure of the Hecke rings of p-adic Chevalley groups, Publ. Math. I.H.E.S. 25 (1965) 5-48 or 237-280.

[IMa1972] N. Iwahori, H. Matsumoto, On some Bruhat decomposition and the structure of the Hecke rings of p-adic Chevalley groups, Publ. Math. Inst. Hautes Études Sci. 40 (1972) 81–116.

[Ion0105061] B. Ion, Nonsymmetric Macdonald polynomials and Demazure characters, Duke Math. J. 116 (2) (2003) 299-318, arXiv:math/0105061v2.

[Ion0111010] B. Ion, Involutions of double affine Hecke algebras, Compositio Math. 139 (2003), no. 1, 67-84. MR2024965, arXiv:math.QA/0111010.

[Ion2005] B. Ion, A weight multiplicity formula for Demazure modules, Int. Math. Res. Notices (5) (2005) 311-323.

[Ion2006] B. Ion, Nonsymmetric Macdonald polynomials and matrix coefficients for unramified principal series, Adv. Math. 201 (2006) 36-62.

[Ion2008] B. Ion, Standard bases for affine parabolic modules and nonsymmetric Macdonald polynomials, J. Algebra 319 (2008) 3480-3517.

[Isa1973] M. Isaacs, Characters of solvable and symplectic groups, Amer. J. Math. 95 (1973), 594–635.

[Isa1994] I. Martin Isaacs, Algebra: A Graduate Course, Brooks/Cole Publishing Co., Pacific Grove, CA, 1994.

[Iwa1964] N. Iwahori, On the structure of a Hecke ring of a Chevalley group over a finite field, J. Fac. Sci. Univ. Tokyo Sect. 1, 10 (1964), 215-236.

[Jac1997] D. Jackson, On nilpotent orbits of type G2, Ph. D. Thesis, University of Sydney, 1997.

[Jae1992] F. Jaeger, Strongly regular graphs and spin models for the Kauffman polynomial, Geom. Dedicate 44 (1992) 23-52.

[Jam1973] G. D. James, The Representation Theory of the Symmetric Groups, Lecture Notes, vol. 637, Springer, Berlin, 1973.

[Jan1973] J.C. Jantzen, Darstellungen halbeinfacher algebraischer Gruppen und zugeordnete kontravariante Formen, Bonner math. Schriften 67 (1973).

[Jan1974] J.C. Jantzen, Zur Charakterformel gewisser Darstellungen halbeinfacher Gruppen und Lie-Algebren, Math. Zeitschrift 140 (1974) 127-150.

[Jan1980] J.C. Jantzen, Moduln mit einem höchsten Gewicht, Lecture Notes in Math. 750 (1980), Springer-Verlag, Berlin. MR 81m:17011

[Jan1995] J. Jantzen, Lectures on Quantum Groups, Graduate Studies in Mathematics Vol. 6, American Mathematical Society, 1995.

[Jim1985] M. Jimbo, Lett. Math. Phys., 1985, 10, N 1, p.63-69.

[Jim1986] M. Jimbo, A q-analog of U(gl(N+1)), Hecke algebra, and the Yang-Baxter equation, Lett. Math. Phys. 11 (1986), no. 3, 247-252, MR0841713 (87k:17011)

[Jim1986-2] M. Jimbo, Commun. Math. Phys., 1986, 102, N 4, 537-548.

[Jim1989] M. Jimbo, Introduction to the Yang-Baxter equation, preprint, 1989,

[JKe1981] G. James and A. Kerber, The representation theory of the symmetric group, Encyclopedia of Mathematics and its Applications 16, Addison-Wesley Publishing Co., Reading, Mass., 1981.

[JLe1994] A. Joseph and G. Letzter, Separation of variables for quantized enveloping algebras, Amer. J. Math. 116 no. 1 (1994) 127-177. MR1262429 (95e:17017)

[JLZ2000] A. Joseph, G. Letzter and S. Zelikson, On the Brylinski-Kostant filtration, J. Amer. Math. Soc. 13 (2000), 945-970.

[JMa1997] G. James and A. Mathas, A q analogue of the Jantzen-Schaper theorem, Proc. London Math. Soc. (3) 74 (1997), no. 2, 241-274.

[JMa2000] G. James and A. Mathas, The Jantzen sum formula for cyclotomic q-Schur algebras, Trans. Amer. Math. Soc. 352 (2000), no. 11, 5381–5404.

[JMM1991] M. Jimbo, K. Misra, T. Miwa, M. Okado, Combinatorics of representations of Uq(𝔰𝔩ˆ(n)) at q=0, Comm. Math. Phys. 36 (1991), 543-566.

[Jon1983] V. Jones, Index for subfactors, Invent. Math. 72 (1983), 1-25.

[Jon1986] V.F.R. Jones, Notes on a talk in Atiyah's seminar, November 1986.

[Jon1987] V.F.R. Jones, Hecke algebra representations of braid groups and link polynomials, Ann. Math. 126 (1987), 335-388.

[Jon1989] V.F.R. Jones, On knot invariants related to some statistical mechanical models, Pacific Journal of Mathematics 137 (1989), 311-334.

[Jon1991] V. Jones, Subfactors and knots, CBMS series number 80 (1991).

[Jon1993] V.F.R. Jones, The Potts model and the symmetric group, in: Subfactors: Proceedings of the Taniguchi Symposium on Operator Algebras (Kyuzeso, 1993), River Edge, NJ, World Sci. Publishing, 1994, pp. 259–267.

[Jon1994] V.F.R. Jones, A quotient of the affine Hecke algebra in the Brauer algebra, Enseign. Math. (2) 40 (1994), 313–344.

[Jos1985] A. Joseph, On the Demazure character formula, Ann. Scient. Ec. Norm. Sup. 18, (1985) 389-419.

[Jos1995] A. Joseph, Quantum groups and their Primitive Ideals, Ergebnisse der Mathematik und ihrer Grenzgebiete; 3 Folge, Bd. 29, Springer-Verlag, New York-Berlin, 1995.

[Joy1986] A. Joyal, Foncteurs analytiques et espéces de structures, Lect. Notes in Math. 1234, Springer-Verlag (1986), 126-160.

[Kac1104219] V. Kac, Infinite dimensional Lie algebras, Third edition. Cambridge University Press, Cambridge, 1990. xxii+400 pp. ISBN: 0-521-37215-1; 0-521-46693-8, MR1104219.

[Kac1980] V.G. Kac, Highest weight representations of infinite-dimensional Lie algebras, Proceedings of the International Congress of Mathematicians (Helsinki, 1978), pp. 299–304, Acad. Sci. Fennica, Helsinki, 1980. MR0562619

[Kac1983] V. Kac, Infinite dimensional Lie algebras, Birkhauser, Boston, 1983.

[Kac1985] V. Kac, Infinite dimensional Lie algebras, Cambridge University Press 1985.

[Kaj2010] S. Kaji, Schubert calculus, seen from torus equivariant topology, Trends in Mathematics New Series 12 (2010), 71–89.

[Kam050136.5] J. Kamnitzer, Mirkovic-Vilonen cycles and polytopes, arXiv:math.AG/050136.5.

[KamPREPRINT] A. Kamita, The b-functions for prehomogeneous spaces of commutative parabolic type and universal Verma modules II—quantum cases, preprint.

[KapNONE] I. Kaplansky, unpublished notes.

[Kas1985] M. Kashiwara, The universal Verma module and the b-function, Adv. Studies in Pure Math. 6, Algebraic groups and related topics (Kyoto/Nagoya, 1983) (1985), 67-81.

[Kas1990] M. Kashiwara, Crystalizing the q-analogue of universal enveloping algebras, Comm. Math.Phys. 133 (1990), 249–260.

[Kas1995] C. Kassel, Quantum groups, Graduate Texts in Mathematics 155, Springer-Verlag, New York, 1995.

[Kat1981] S. Kato, Irreducibility of principal series representations for Hecke algebras of affine type, J. Fac. Sci. Univ. Tokyo Sec. IA 28 (1981) 929–943.

[Kat1982] S. Kato, Spherical functions and a q-analogue of Kostant's weight multiplicity formula, Invent. Math. 663 (1982), 461-468.

[Kat1982-2] S. Kato, Irreducibility of principal series representations for Hecke algebras of affine type, J. Fac. Sci. Univ. Tokyo, Sec. 1A 128 no. 3 (1982), 929-943. MR 84b:22029

[Kat1983] S. Kato, A realization of irreducible representations of affine Weyl groups, Nederl. Akad. Wetensch. Indag. Math. 45 (1983), 193–201.

[Kat1993] S. Kato, Duality for representations of a Hecke algebra, Proc. Amer. Math. Soc. 119 (1993) 941–946.

[Kat2009] S. Kato, An exotic Deligne-Langlands correspondence for symplectic groups, Duke Math. J. 148 (2009) 305-371. MR2524498 arXiv:math/0601155

[Kau1986] L.H. Kauffmann, New Invariants in the Theory of knots, preprint, 1986.

[Kau1987] L. Kauffman, State models and the Jones polynomial, Topology 26 (1987), 395-401.

[Kau1990] L. Kauffman, An invariant of regular isotopy, Trans. Amer. Math. Soc. 318 (1990), 417-471.

[Kaw1975] N. Kawanaka, Unipotent elements and characters of finite Chevalley groups, Osaka Journal of Mathematics 12 (1975), 523–554.

[Kem1976] G. Kempf, Linear systems on homogeneous spaces, Ann. Math. 103 (1976), 557–591.

[Ker1987] S.V. Kerov, Zap. Nauch. Semin. LOMI, 162, 1987 (in Russian).

[Ker1990] S.V. Kerov, Characters of Hecke and Birman-Wenzl algebras, in Quantum groups (Leningrad 1990), Lecture Notes in Math. 1510, Springer, Berlin (1992), 179-187.

[Ker1990-2] S.V. Kerov, Generalized Hall-Littlewood symmetric functions and orthogonal polynomials, preprint (1990).

[Kil2000] K. Killpatrick, A combinatiorial proof of a recursion for the q-Kostka polynomials, J. Combin. Theory Ser. A 92 (2000), 29-53.

[Kir1995] A. Kirillov, Jr., Inner product on conformal blocks and Macdonald's polynomials at roots of unity, Preprint (1995).

[KKr1104.1089] V. Kiritchenko and A. Krishna, Equivariant cobordism of flag varieties and of symmetric varieties, arXiv:1104.1089.

[KKu0866159] B. Kostant and S. Kumar, The nil Hecke ring and cohomology of G/P for a Kac-Moody group G, Adv. in Math. 62 (1986) 187-237, MR0866159.

[KKu0895705] B. Kostant and S. Kumar, T-equivariant K-theory of generalized flag manifolds, Adv. in Math. 62 (1986), 187-237, MR0895705.

[KKu1990] B. Kostant and S. Kumar, T-equivariant K-theory of generalized flag varieties, J. Differential Geom. 32 (1990), 549–603.

[KLa1972] S. L. Kleiman and D. Laksov, Schubert calculus, Amer. Math. Monthly 79 (1972), 1061-1082.

[KLa2009] M. Khovanov and A. D. Lauda, A diagrammatic approach to categorification of quantum groups. I, Representation Theory, vol. 13, pp. 309–347, 2009.

[Kle1974] S. L. Kleiman, Rigorous foundation of Schubert's enumerative calculus, Problem 15, Proceedings of a Symposium on Mathematical Developments Arising from the Hilbert Problems, Dekalb, Ill., 1974.

[Kle1995] A. S. Kleshchev, Branching rules for modular representations of symmetric groups. II, Journal für die Reine und Angewandte Mathematik, vol. 459, pp. 163–212, 1995.

[KLe1997] S. Kumar and G. Letzter, Shapovalov determinant for restricted and quantized restricted enveloping algebras, Pacific J. Math. 179 no. 1 (1997) 123-161.

[Kle2165457] A. Kleshchev, Linear and projective representations of symmetric groups, Cambridge Tracts in Mathematics, 163, Cambridge University Press, Cambridge, 2005, xiv+277 pp.. ISBN: 0-521-83703-0, MR2165457 (2007b:20022).

[KLu0862716] D. Kazhdan and G. Lusztig, Proof of the Deligne-Langlands conjecture for Hecke algebras, Invent. Math. 87 (1987), 153–215, MR0862716.

[KLu1979] D. Kazhdan and G. Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), 165-184. MR81j:20066

[KLu1980] D. Kazhdan and G. Lusztig, Schubert Varieties and Poincare Duality, Proc. Symp. Pure Math. 36 (1980), 185-203. MR84g:14054

[KLu1987] D. Kazhdan and G. Lusztig, Proof of the Deligne-Langlands conjecture for Hecke algebras, Invent. Math. 87 (1987) 153–215. MR0862716

[KLu1993] D. Kazhdan and G. Lusztig, Tensor structures arising from affine Lie algebras I, II, J. Amer. Math. Soc. 6, (1993) 905-1011.

[Kly1974] A.A. Klyachko, Lie elements in the tensor algebra, Siberian Math. J. 15 (1974), 1296-1304.

[KMi0411182] M. Kapovich and J.J. Millson, A path model for geodesics in Euclidean buildings and its applications to representation theory, arXiv:math.RT/0411182.

[KMS1995] M. Kashiwara, T. Miwa, and E. Stern, Decomposition of q-deformed Fock spaces, Selecta Mathematica. New Series, vol. 1, no. 4, pp. 787–805, 1995.

[KMu1992] M. Kosuda and J. Murakami, The centralizer algebras of mixed tensor representations of Uq𝔤𝔩n and the HOMFLY polynomial of links, Proc. Japan Acad. Ser. A Math. Sci. 68 (1992), 148-151.

[KMu1993] M. Kosuda and J. Murakami, Centralizer algebras of the mixed tensor representations of quantum group Uq𝔤𝔩(n,), Osaka J. Math. 30 (1993), 475-507.

[Kna1986] A. Knapp, Representation theory of semisimple groups, Princeton University Press, 1986. MR 87j:22022

[Knu1970] D. Knuth, Permutations, matrices, and generalized Young tableaux, Pacific Journal of Mathematics 34 (1970), 709–727.

[Koh1987] T. Kohno, Monodromy representations of braid groups and Yang-Baxter equations, Ann. Inst. Fourier Grenouble 37 (1987) 139-160.

[Koh1990] A. Kohnert, Thesis, Bayreuth, 1990.

[Koi1989] K. Koike, On the decomposition of tensor products of the representations of the classical groups: by means of universal characters, Adv. Math. 74 (1989), 57-86.

[Kos1882] C. Kostka, Über den Zusammenhang zwischen einigen Formen von symmetrischen Funktionen, Crelle’s Journal 93 (1882), 89-123.

[Kos1961] B. Kostant, Ann. Math., 74, 329-387 (1961).

[Kos1963] B. Kostant, Lie group representations on polynomial rings, Amer. J. Math. 85 (1963), 327-404.

[KOP2000] C. Krattenthaler, L. Orsina, P. Papi, Enumeration of ad-nilpotent b-ideals for simple Lie algebras, Adv. Appl. Math, Special issue in memory of Rodica Simion, 2000.

[Kos2000] B. Kostant, A generalization of the Bott–Borel–Weil theorem and Euler number multiplets of representations, Conference Moshé Flato 1999 (Dijon), Lett. Math. Phys. 52 (1) (2000) 61–78.

[KPe0750341] V. Kac and D. Peterson, Infinite dimensional Lie algebras, theta functions and modular forms, Adv. in Math. 53 (1984), 125–264, MR0750341.

[KPr1986] W. Kráskiewicz and P. Pragacz, Schubert functors and Schubert polynomials, preprint (1986).

[Kra1980] H. Kraft, Conjugacy classes and Weyl group representations, Proc. 1980 Torun Conf. Poland, Asterisque 87-88 (1981), 195-205.

[KRa1987] V.G. Kac and A.K. Raina, Bombay lectures on highest weight representations of infinite-dimensional Lie algebras, Advanced Series in Mathematical Physics, 2. World Scientific Publishing Co., Inc., Teaneck, NJ, 1987. xii+145 pp. MR1021978

[KRa2002] C. Kriloff and A. Ram, Representations of graded Hecke algebras, Represent. Theory 6 (2002) 31–69. MR1915086

[KRe1980] P.P. Kulish and N.Yu. Reshetikhin, Zap. Nauch. Semin. LOMI, 1980, 101, p.112 (in Russian).

[KRe1981] P. Kulish and N. Reshetikhin, Zap. Nauch. Semi. LOMI, 1981, 101, 101-110 (in Russian).

[KRe1986] A. Kirillov and N. Reshetikhin, Lett. Math. Phys., 1986, 12, 199-208.

[Kri1006.3176] A. Krishna, Equivariant cobordism of schemes, Doc. Math. 17 (2012) 95-134, MR2889745, arXiv:1006.3176.

[Kri1995] C. Kriloff, Representations of graded Hecke algebras associated to noncrystallographic root systems, Ph.D. Thesis, University of Michigan (1995).

[Kri1999] C. Kriloff, Some interesting nonspherical tempered representations of graded Hecke algebras, Trans. Amer. Math. Soc. 351 (1999), no. 11, 4411-4428. MR 2000a:20012

[KRS1981] P.P. Kulish, N.Yu. Reshetikhin and E.K. Sklyanin, Lett. Math. Phys., 1981, 5, p.393.

[KSa1997] F. Knop and S. Sahi, A recursion and combinatorial formula for Jack polynomials, Invent. Math. 128 (1997), no. 1, 9–22. MR 98k:33040

[KSa1997-2] M. Kashiwara and Y. Saito, Geometric constructions of crystal bases, Duke Math. 89 (1997), 9-36. arXiv:q-alg/9606009

[KSc1203.6126] S. Kumar and K. Schwede, Richardson varieties have Kawamata log terminal singularities, arXiv:1203.6126.

[KSc1985] M. Kashiwara and P. Schapira, Microlocal study of sheaves, Astérisque 128 (1985).

[KSc1997] A. Klimyk and K. Schmudgen, Quantum groups and their representations, Springer-Verlag, Berlin, 1997. vii+552 pp. ISBN: 3-540-63452-5.

[KSk1982] P.P. Kulish and E.K. Sklyanin, Lecture Notes in Physics, 1982, 151, p.61.

[KSo1973] R. Kilmoyer and L. Solomon, On the theorem of Feit-Higman, J. Combinatorial Theory 15 (1973), 310-322.

[KTe1987] K. Koike and I. Terada, Young-diarammatic methods for the representation theory of the classical groups of type Bn, Cn, Dn, J. Algebra 107, 466-511 (1987). MR0885807

[Kum1383959] S. Kumar, The nil Hecke ring and singularity of Schubert varieties, Invent. Math. 123 (1996), 471-506, MR1383959.

[Kum1923198] S. Kumar, Kac-Moody groups, their flag varieties and representation theory, Progress in Mathematics 204 Birkhäuser Boston, Inc., Boston, MA, 2002 ISBN: 0-8176-4227-7, MR1923198.

[Kup1994] G. Kuperberg, Symmetries of plane partitions and the permanent-determinant method, J. Combin. Theory Ser. A 68 (1994), 115–151.

[Kup1994-2] G. Kuperberg, Self-complementary plane partitions by Proctor’s minuscule method, European J. Combin. 15 (1994), 545–553.

[Kup1994-3] G. Kuperberg, The quantum G2 link invariant, Internat. J. Math. 5 (1994), 61–85.

[Kup1996] G. Kuperberg, Four symmetry classes of plane partitions under one roof, J. Combin. Theory Ser. A 75 (1996), 295–315.

[Kup1996-2] G. Kuperberg, Spiders for rank 2 Lie algebras, Comm. Math. Phys. 180 (1996), 109–151.

[KVe1985] S.V. Kerov and A.M. Vershik, Locally semisimple algebras, Kombinatorial theory and K0-functor,, Modern probl. of Math. (ed. R.V. Gamkrelidse), 26, VINITI, Moskow 1985.

[KVo1995] A.W. Knapp and D. Vogan, Cohomological induction and unitary representations, Princeton Mathematical Series 45, Princeton University Press, Princeton, NJ, 1995.

[KWe1993] R.C. King and T.A. Welsh, Construction of orthogonal group modules using tableaux, Linear and Multilinear Algebra 33 (1993), 251–283.

[KWy1990] R.C. King and B.G. Wybourne, Characters of Hecke algebras Hn(q) of type An-1, J. Phys. A 23 (1990), no. 23, L1193–L1197

[KWy1992] R.C. King and B.G. Wybourne, Representations and traces of the Hecke algebras Hn(q) of type An-1, J. Math. Phys. 33 (1992), 4-14.

[KZa1984] V.G. Knizhnik and A.B. Zamolodchikov, Current algebra and Wess-Zumino models in two dimensions, Nucl. Physics B247 (1984) 83-103.

[KZe1996] H. Knight, A. Zelevinsky, Representations of quivers of type A and the multisegment duality, Adv. Math. 117 (2) (1996) 273–293.

[Lak1972] D. Laksov, Algebraic cycles on grassman varieties, Advances in Mathematics 9 (1972), 1061-1082.

[Lam0906.0385] T. Lam, Affine Schubert classes, Schur positivity, and combinatorial Hopf algebras, Bulletin of the London Math. Soc. 2011. doi:10.1112/blms/bdq110, arXiv:0906.0385.

[Lam1999] S. Lambropoulou, Knot theory related to generalized and cyclotomic Hecke algebras of type B, J. Knot Theory Ramifications 8 (1999), 621–658.

[Lan1989] R. Langlands, On the classification of irreducible representations of real algebraic groups, in Representation theory and harmonic analysis on semisimple Lie groups, 101–170, Math. Surveys Monogr., 31, Amer. Math. Soc., Providence, RI, 1989. MR 91e:22017

[Las1974] A. Lascoux, Puissances extérieures, déterminants et cycles de Schubert, Bull. Soc. Math. France 102 (1974) 161-179.

[Las1974-2] A. Lascoux, Polynomes symmetric et coefficients d'intersection de cycles de Schubert, C. R. Acad. Sci. Paris 279 (1974), 201-204.

[Las1982] A. Lascoux, Classes de Chern des variétés de drapeaux, C.R. Acad. Sci. Paris 295 (1982) 393-398,

[Las1988] A, Lascoux, Anneau de Grothendieck de la variété des drapeaux, preprint (1988).

[Las1989] A. Lascoux, Cyclic permutations on words, tableaux and harmonic polynomials, Proceedings of the Hyderabad Conference on Algebraic Groups (Hyderabad, 1989), Manoj Prakashan, Madras, 1991, 323-347.

[Las2002] A. Lascoux, Chern and Yang through Ice, preprint 2002.

[Led1994] R. Leduc, Thesis, University of Wisconsin–Madison, 1994.

[Leh1995] G. Lehrer, Poincaré polynomials for unitary reflection groups, Invent. Math. 120 (1995), 411–425.

[Lek1981] H. van der Lek, Extended Artin groups, Singularities, Part 2 (Arcata, Calif., 1981), 117–121, Proc. Sympos. Pure Math., 40, Amer. Math. Soc., Providence, RI, 1983.

[Len0804.4716] C. Lenart, On combinatorial formulas for Macdonald polynomials, Adv. Math. 220 (2009), no. 1, 324-340, arXiv:0804.4716.

[Lid1950] V. B. Lidskii, On the characteristic numbers of the sum and product of symmetric matrices, Dokl. Akad. Nauk SSSR 75 (1950), 769-772.

[Lit1940] D. E. Littlewood, The Theory of Group Characters and Matrix Representations of Groups, Oxford University Press, New York 1940.

[Lit1950] D. E. Littlewood, The Theory of Group Characters, second ed., Oxford University Press, 1950.

[Lit1994] P. Littelmann, A Littlewood-Richardson rule for symmetrizable Kac-Moody algebras, Invent. Math. 116 (1994), 329-346.

[Lit1995] P. Littelmann, Paths and root operators in representation theory, Ann. of Math. (2) 142 (1995) 499–525.

[Lit1995-2] P. Littelmann, The path model for representations of symmetrizable Kac–Moody algebras, in: Proceedings of the International Congress of Mathematicians, Vol. 1, Zürich, 1994, Birkhäuser, Basel, 1995, pp. 298–308.

[Lit1997] P. Littelmann, Characters of representations and paths in 𝔥*, Proc. Symp. Pure Math. 61 (1997), 29-49.

[LLT1261063] A. Lascoux, B. Leclerc, J.-Y. Thibon, Green polynomials and Hall-Littlewood functions at roots of unity, Europ. J. Combinatorics 15 (1994) 173–180. MR1261063

[LLT1996] A. Lascoux, B. Leclerc, J.-Y. Thibon, Hecke algebras at roots of unity and crystal bases of quantum affine algebras, Comm. Math. Phys. 181 (1996), 205-263.

[LMo2286826] M. Levine and F. Morel, Algebraic Cobordism, Springer Monographs in Mathematics, Springer, Berlin, 2007. xii+244 pp. ISBN: 978-3-540-36822-9; 3-540-36822-1, MR2286826.

[Loo1976] E. Looijenga, Root systems and Elliptic curves, Invent. Math. 38 (1976), 17-32.

[Loo1980] E. Looijenga, Invariant theory for generalized root systems, Invent. Math. 61, (1980), 1-32.

[Loo1981] E. Looijenga, Rational surfaces with an anti-canonical cycle, Ann. Math. 114, (1981), 267-322.

[Los1999] J. Losonczy, Standard Young tableaux in the Weyl group setting, J. Algebra 220 (1999) 255–260. MR 2000h:05232

[Lou] M. Loukaki, loukaki@math.wisc.edu, loukaki@math.uiuc.edu Maria Loukaki, E.O.K. 18, Heraklion Crete, 71305 GREECE, Tel. 3081-252467.

[LPo0309207] C. Lenart and A. Postnikov, Affine Weyl groups in K-theory and representation theory, Int. Math. Res. Not. IMRN (2007), no. 12, arXiv:math.RT/0309207.

[LPo0502147] C. Lenart and A. Postnikov, A combinatorial model for crystals of Kac-Moody algebras, Trans. Amer. Math. Soc. 360 (2008), 4349-4381, arXiv:math.RT/0502147.

[LRa1977] See [LRa1997].

[LRa1995] P. Lalonde and A. Ram, Standard Lyndon bases of Lie algebras and enveloping algebras, Trans. Amer. Math. Soc 347 (1995) 1821-1830.

[LRa1997] R. Leduc and A. Ram, A ribbon Hopf algebra approach to the irreducible representations of centralizer algebras: The Brauer, Birman-Wenzl and type A Iwahori-Hecke algebras, Adv. in Math. 125 (1997), 1-94. MR1427801 (98c:20015)

[LSc1158787] A. Lascoux and M.-P. Schützenberger, Décompositions dans lálgèbre des différences divisées, Discrete Math. 99 (1992) 165-179, MR1158787.

[LSc1978] A. Lascoux and M.-P. Schützenberger, Sur une conjecture de H.O. Foulkes, C. R. Acad. Sci. Paris Sr. A-B 286A (1978), 323-324.

[LSc1982] A. Lascoux and M.-P. Schützenberger, Polynômes de Schubert, C.R. Acad. Sci. Paris 294 (1982) 447-450.

[LSc1982-2] Structure de Hopf de l'anneau de cohomologie et de l'anneau de Grothendieck d'une variété de drapeaux, C.R. Acad. Sci. Paris 295 (1982) 629-633.

[LSc1983] A. Lascoux and M.-P. Schützenberger, Symmetry and flag manifolds, Springer Lecture Notes 996 (1983) 118-144.

[LSc1985] A. Lascoux and M.-P. Schützenberger, Schubert polynomials and the Littlewood-Richardson rule, Letters in Math. Physics 10 (1985) 111-124.

[LSc1985-2] A. Lascoux and M.-P. Schützenberger, Interpolation de Newton à plusieurs variables, Sém. d'Algèbre M.P. Malliavin 1983-84, Springer Lecture Notes 1146 (1985) 161-175.

[LSc1987] A. Lascoux and M.-P. Schützenberger, Symmetrization operators on polynomial rings, Funkt. Anal. 21 (1987) 77-78.

[LSc1988] A. Lascoux and M.-P. Schützenberger, Schubert and Grothendieck polynornials, preprint (1988).

[LSc1989] A. Lascoux and M.-P. Schützenberger, Tableaux and non-commutative Schubert polynomials, to appear in Funkt. Anal. (1989).

[LSe1986] V. Lakshmibai and C.S. Seshadri, Geometry of G/P-V, J. of Algebra 100 (1986), 462-557.

[LSe1989] V. Lakshmibai and C.S. Seshadri, Standard monomial theory, Proceedings of the Hyderabad Conference on Algebraic Groups (Hyderabad, 1989), Manoj Prakashan, Madras, (1991), 279-322.

[LSe2003] P. Littelmann, C.S. Seshadri, A Pieri–Chevalley formula for K(G/B) and standard monomial theory, in: Studies in Memory of Issai Schur, Progress in Mathematics, vol. 210, Birkhaüser, 2003, pp. 155–176.

[LSp1983] G. Lusztig and N. Spaltenstein, On the generalized Springer correspondence for classical groups, Algebraic groups and related topics (kyoto/Nagoya, 1983), Adv. Stud. Pure Math. 6, North-Holland, Amsterdam-New York, 1995.

[LSS0710.2720] T. Lam, A. Schilling, and M. Shimozono, Schubert polynomials for the affine Grassmannian of the symplectic group, Math. Zeitschrift 264 (4) (2010) 765–811. MR2593294 arXiv:0710.2720.

[LSS2660675] T. Lam, A. Schilling and M. Shimozono, K-theory Schubert calculus of the affine Grassmannian, Compos. Math. 146 (2010) 811–852, MR2660675 (2011h:14078).

[LTV1999] B. Leclerc, J.-Y. Thibon, E. Vasserot, Zelevinsky’s involution at roots of unity, J. Reine Angew. Math. 513 (1999) 33–51.

[Lur2597740] J. Lurie, A survey of elliptic cohomology, Algebraic topology, 219-277, Abel Symp. 4 Springer, Berlin, 2009. MR2597740.

[Lus1974] G. Lusztig, The discrete series of GLn over a finite field, Annals of Mathematics Studies 81, Princeton University Press, Princeton, N.J., 1974.

[Lus1977] G. Lusztig, Representations of finite Chevalley groups, Expository lectures from the CBMS Regional Conference held at Madison, Wis., August 8–12, 1977. CBMS Regional Conference Series in Mathematics 39, American Mathematical Society, Providence, R.I., 1978.

[Lus1977-2] G. Lusztig, Classification des reprsentations irrductibles des groupes classiques finis, C. R. Acad. Sci. Paris Sr. A-B 284 (1977), A473–A475.

[Lus1981] G. Lusztig, Green polynomials and singularities of nilpotent classes, Adv. in Math. 42 (1981), 169-178. MR83c:20059

[Lus1983] G. Lusztig, Singularities, character formulas and a q-analog of weight multiplicities, in Analysis and topology on singular spaces, II, III (Luminy, 1981) Astérisque 101-102, Soc. Math. France, Paris (1983), pp. 208-229.

[Lus1983-2] G. Lusztig, Some examples of square integrable representations of semisimple p-adic groups, Trans. Amer. Math. Soc. 277 (1983), 623–653.

[Lus1984] G. Lusztig, Characters of reductive groups over a finite field, Annals of Mathematics Studies 107, Princeton University Press, Princeton, N.J. 1984.

[Lus1985] G. Lusztig, Equivariant K-theory and representations of Hecke algebras, Proc. Amer. Math. Soc. 94 (1985), 337–342.

[Lus1987] G. Lusztig, Cells in affine Weyl groups II, J. Algebra 109 (1987), 536-548.

[Lus1987-2] G. Lusztig, Cells in affine Weyl groups III, J. Fac. Sci. Univ. Tokyo Sect. 1A Math. 34 (1987), 223-243.

[Lus1987-3] G. Lusztig, Some problems in the representation theory of finite Chevalley groups, Proc. Symp. Pure Math. 37 Amer. Math. Soc. (1987), 313-317.

[Lus1988] G. Lusztig, Cuspidal local systems and graded Hecke algebras I, Inst. Hautes Études Sci. Publ. Math. 67 (1988), 145–202. MR 90e:22029

[Lus1989] G. Lusztig, Affine Hecke algebras and their graded version, J. Amer. Math. Soc. 2 (1989), 599–635. MR 90e:16049

[Lus1989-2] G. Lusztig, Representations of affine Hecke algebras, in Orbites unipotentes et représentations, Astérisque 171-172 (1989), 73-89.

[Lus1990] G. Lusztig, Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc 3 (1990), 447-498.

[Lus1990-2] G. Lusztig, Finite dimensional Hopf algebras arising from quantized universal enveloping algebras, J. Amer. Math. Soc. 3 (1990) 257-296.

[Lus1990-3] G. Lusztig, Canonical bases arising from quantized enveloping algebras II, Common Trends in Mathematics and quantum field theories (T. Eguchi et. al. eds) Progr. Theoret. Phys. Suppl., 102 (1990), pp. 175–201

[Lus1990-4] G. Lusztig, Quantum groups at roots of 1, Geom. Dedicata 35 (1990), no. 1-3, 89–113. MR1066560

[Lus1991] G. Lusztig, Quivers, perverse sheaves and quantized enveloping algebras, J. Amer. Math. Soc 4 (1991), 365-421.

[Lus1993] G. Lusztig, Introduction to Quantum Groups, Progress in Mathematics 110, Birkhauser, Boston, 1993.

[Lus1995] G. Lusztig, Cuspidal local systems and graded Hecke algebras II, Representations of Groups (Providence) (B. Allison and G. Cliff, eds.), CMS Conf. Proc., vol. 16, Amer. Math. Soc., 1995, pp. 217–275. MR 96m:22038

[Lus1995-2] G. Lusztig, Classification of unipotent representations of simple pv groups, Internat. Math. Res. Notices (1995), 517-589.

[Lus1998] G. Lusztig, Bases in equivariant K-theory, Rep. Theory 2 (1998), 298-369.

[Lus1998-2] G. Lusztig, Periodic W-graphs, Represent. Theory 2, (1998), 207-279.

[Lus1999] G. Lusztig, Bases in equivariant K-theory, II, Represent. Theory (1999), 281–353.

[Lus2003] G. Lusztig, Hecke algebras with unequal parameters, CRM Monograph Series 18, American Mathematical Society (2003). MR1974442

[LVi1973] R. A. Liebler and M. R. Vitale, Ordering the partition characters of the symmetric group, J. Algebra, 25, No. 3, 487-489 (1973).

[LVo1983] G. Lusztig and D. Vogan, Singularities of closures of K-orbits on flag manifolds, Inventiones Mathematicae 21 (1983), 365–379.

[Mac0011046] I.G. Macdonald, Orthogonal polynomials associated with root systems, Sém. Lotharingien Combinatoire 45 (2000/01), Art. B45a (electronic) text of 1978 preprint. MR1817334 and arXiv:math.QA/0011046

[Mac1354144] I.G. Macdonald, Symmetric functions and Hall polynomials, Oxford University Press, London, 1988. MR1354144

[Mac1423624] I.G. Macdonald, Affine Hecke algebras and orthogonal polynomials, Séminaire Bourbaki 1994/95, Astérisque 237 (1996) Exp. No. 797, 4, 189-207. MR1423624

[Mac1968] I.G. Macdonald, Algebraic geometry: Introduction to schemes, W. A. Benjamin, New York-Amsterdam, 1968.

[Mac1968-2] I.G. Macdonald, Spherical functions on a p-adic Chevalley group, Bull. A.M.S. 74 (1968), 520-525.

[Mac1971] I.G. Macdonald, Spherical functions on a group of p-adic type, Publications of the Ramanujan Institute No. 2, Madras (1971).

[Mac1972] I.G. Macdonald, The Poincaré series of a Coxeter group, Math. Ann. 199 (1972), 161-174.

[Mac1976581] I.G. Macdonald, Affine Hecke Algebras and Orthogonal Polynomials, Cambridge Tracts in Mathematics, vol. 157, Cambridge University Press, Cambridge, 2003. MR1976581.

[Mac1979] I.G. Macdonald, Hall Polynomials and Symmetric Functions, Oxford Univ. Press, 1979.

[Mac1980] I.G. Macdonald, Polynomial functors and wreath products, J. Pure and Appl. Algebra 18 (1980) 173–204.

[Mac1983] I.G. Macdonald, Lectures on Kac-Moody Lie algebras, 1983.

[Mac1986] I.G. Macdonald, Kac-Moody algebras, in Lie Algebras and Related Topics, Eds D.J. Britten, F.W. Lemire, and R.V. Moody, Conference Proceedings of the Canadian Mathematical Society, 1986, Volume 5.

[Mac1991] I.G. Macdonald, Lecture notes on root systems, University of California, San Diego, Spring 1991.

[Mac1992] I.G. Macdonald, Schur functions, Theme and variations, Séminaire Lotharingien, vol. 372/S-20, Publications I.R.M.A. Strasbourg 498 (1992) 5-39.

[Mac1995] I.G. Macdonald, Symmetric functions and Hall polynomials, Oxford University Press, New York (second edition, 1995).

[Mac2003] I.G. Macdonald, Affine Hecke algebras and orthogonal polynomials, Cambridge Tracts in Mathematics, 157 Cambridge University Press, Cambridge (2003) x+175 pp. ISBN: 0-521-82472-9, MR1976581.

[Maj1995] S. Majid, Foundations of quantum group theory, Cambridge University Press, 1995.

[Mal1995] G. Malle, Unipotente Grade imprimitiver komplexer Spiegelungsgruppen, J. Algebra 177 (1995), 768–826.

[Mar1991] P. Martin, Potts models and related problems in statistical mechanics, Series on Advances in Statistical Mechanics, vol. 5, World Scientific Publishing Co. Inc., Teaneck NJ, 1991.

[Mar1994] P. Martin, Temperley–Lieb algebras for nonplanar statistical mechanics—the partition algebra construction, J. Knot Theory Ramifications 3 (1994) 51–82.

[Mar1996] P. Martin, The structure of the partition algebras, J. Algebra 183 (1996) 319–358.

[Mar2000] P. Martin, The partition algebra and the Potts model transfer matrix spectrum in high dimensions, J. Phys. A 33 (2000) 3669–3695.

[Mat1969] H. Matsumoto, Functions sphériques sur un groupe semi-simple p-adique, Comptes Rendus 269 (1969), 829-832.

[Mat1969-2] H. Matsumoto, Générateurs et Relations des Groupes de Weyl Généralisés, Comptes Rendus, L'Acad émie Des Sciences Paris, 258 (1969), 3419-3422.

[Mat1977] H. Matsumoto, Analyse harmonique dans les systèmes de Tits bornologiques de type affine, Lect. Notes in Math. 590, Springer-Verlag, Berlin-New York, 1977. MR 58:28315

[Mat1992] A. Matsuo, Integrable connections related to zonal spherical functions, Invent. Math. 110 (1992) 96-121.

[Mat1998] A. Mathas, Simple modules of Ariki-Koike algebras, Proc. Symp. Pure Math. Amer. Math. Soc. 63 (1998), 383-396.

[Mat1999] A. Mathas, Canonical bases and the decomposition matrices of Ariki-Koike algebras, paper withdrawn (1999), arXiv:q-alg/9607005.

[Mat2000] O. Mathieu, Positivity of some intersections in K0(G/B), in: Commutative Algebra, Homological Algebra and Representation Theory, Catania, Genoa/Rome, 1998; J. Pure Appl. Algebra 152 (1–3) (2000) 231–243.

[May1413302] J.P. May, Equivariant homotopy and cohomology theory, CBMS Regional Conference Series in Mathematics 91. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1996, ISBN: 0-8218-0319-0, MR1413302.

[McC1975] J. McConnell, Note on multiplication theorems for Schur functions, Lecture Notes, vol. 579, Springer, Berlin, 1975.

[McN0907.2675] P.J. McNamara, Metaplecitc Whittaker functions and crystal bases, Duke Math. J. 156 (2011) 1-31, arXiv:0907.2675.

[MMi1990] K. Misra and T. Miwa, Crystal base for the basic representation of Uq(𝔰𝔩nˆ), Communications in Mathematical Physics, vol. 134, no. 1, pp. 79–88, 1990.

[Mol2355506] A. Molev, Yangians and classical Lie algebras, Mathematical Surveys and Monographs 143, American Mathematical Society, Providence, RI, 2007. xviii+400 pp. ISBN: 978-0-8218-4374-1 MR2355506

[Mon1959] D. Monk, The geometry of flag manifolds, Proc. London Math. Soc. (3) 9 (1959) 253-286.

[Mon1992] S. Montgomery, Hopf Algebras and their Actions on Rings, Regional Conference Series in Mathematics 82, American Mathematical Society, 1992.

[Mor0246983] A. O. Morris, On an algebra of symmetric functions, Quart. J. Math. 16 (1965) 53–64. MR0246983

[MPi1995] R. Moody and A. Pianzola, Lie algebras with triangular decompositions, Canadian Mathematical Society Series of Monographs and Advanced Texts. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1995. MR1323858

[MRa2330502] Elliptic cohomology. Geometry, applications, and higher chromatic analogues, Papers from the Workshop on Elliptic Cohomology and Chromatic Phenomena held in Cambridge, December 920, 2002. Edited by Haynes R. Miller and Douglas C. Ravenel, London Mathematical Society Lecture Note Series 342 Cambridge University Press, Cambridge, 2007. xii+364 pp. ISBN: 978-0-521-70040-5; 0-521-70040-X MR2330502.

[MRo1112.0620v1] A. Molev and N. Rozhkovskaya, Characteristic maps for the Brauer algebra, arXiv:1112.0620v1.

[MRo1998] P. Martin, G. Rollet, The Potts model representation and a Robinson–Schensted correspondence for the partition algebra, Compositio Math. 112 (1998) 237–254.

[MSa1994] P. Martin, H. Saleur, Algebras in higher-dimensional statistical mechanics—the exceptional partition (mean field) algebras, Lett. Math. Phys. 30 (1994) 179–185.

[MSc1990] G. Mack and V. Schomerus, Conformal field algebra with quantum symmetry from the theory of superselection sectors, Preprint (1990).

[MSe1989] G. Moore and N. Seiber, Classical and quantum conformal field theory, Comm. Math. Phys. Volume 123, Number 2 (1989), 177-254.

[Mur1937] F.D. Murnaghan, The characters of the symmetric group, Amer. J. Math. 59 (1937), 739-753.

[Mur1987] J. Murakami, The Kauffman polynomial of links and representation theory, Osaka J. Math. 24 (1987), 745-758.

[Mur1990] J. Murakami, The representations of the q-analogue of Brauer’s centralizer algebras and the Kauffman polynomial of links, Publ. Res. Inst. Math. Sci. 26 (1990), 935-945.

[Mur1992] G.E. Murphy, On the representation theory of the symmetric groups and associated Hecke algebras, J. Algebra 152 (1992), 492-513.

[Mur1995] G.E. Murphy, The representations of Hecke algebras of type An, J. Algebra 173 (1995), 97-121.

[Mur1996] G.E. Murphy, Representations of Hecke algebras of CrSn at roots of unity, in preparation (1996).

[MVi1987] R. Mirollo, K. Vilonen, Berstein–Gelfand–Gelfand reciprocity on perverse sheaves, Ann. Scient. École Norm. Sup 20 (1987) 311–324.

[MWa1986] C. Moeglin, J.-L. Waldspurger, L’involution de Zelevinski, J. Reine Angew. Math. 372 (1986) 136–177.

[MWo1999] P. Martin, D. Woodcock, On central idempotents in the partition algebra, J. Algebra 217 (1) (1999) 156–169.

[MWo1998] P. Martin, D. Woodcock, The partition algebras and a new deformation of the Schur algebras, J. Algebra 203 (1998) 91–124.

[Nak1940] T. Nakayama, On some modular properties of irreducible representations of a symmetric group I and II, Jap. J. Math. 17 (1940), 165-184, 411-423.

[Nak1941] T. Nakayama, On Frobenius algebras, II, Ann. of Math. 42 (1941), 1-21.

[Nak1998] H. Nakajima, Quiver varieties and Kac-Moody algebras, Duke Math, J. 91 No. 3 (1998), 515-560.

[Nak1999] H. Nakajima, Lectures on Hilbert schemes of points on surfaces, Univ. Lecture Series, 18, Amer. Math. Soc. Providence, RI (1999).

[Nak2001] H. Nakajima, Quiver varieties and finite dimensional representations of quantum affine algebras, J. Amer. Math. Soc. 14 (2001), 145-238. MR1808477

[Nak2002] H. Nakajima, Quiver varieties and tensor products, arXiv:math/0103008v2 [math.QA]

[Naz1996] M. Nazarov, Young’s orthogonal form for Brauer’s centralizer algebra, J. Algebra 182 (1996), 664-693. MR1398116

[Nei1984] W. Neidhardt, Irreducible subquotients and imbeddings of Verma modules, Algebras Groups Geom. 1 (1984), no. 1, 127–136. MR0744733

[Nes1938] C. Nesbitt, Regular representations of algebras, Ann. of Math. 39 (1938), 634-658.

[Ngu1983] V.D. Nguyen, The fundamental groups of the spaces of regular orbits of the affine Weyl groups, Topology 22 (1983), no. 4, 425–435.

[Nou1992] M. Noumi, Macdonald's symmetric functions on some quantum homogeneous spaces, preprint (1992).

[Nou1995] M. Noumi, Macdonald-Koornwinder polynomials and affine Hecke rings, Suriseisekikenkyusho Kokyuroku (FIX THE ACCENTS, see references in [M03]) 919 (1995) 44-55 (in Japanese).

[NRa2003] K. Nelsen, A. Ram, Kostka-Foulkes polynomials and Macdonald spherical functions, in: C. Wensley (Ed.), Surveys in Combinatorics 2003, London Math. Soc. Lect. Notes, vol. 307, Cambridge University Press, 2003, pp. 325–370.

[NTa1998] M. Nazarov, V. Tarasov, Representations of Yangians with Gelfand–Zetlin bases, J. Reine Angew. Math. 496 (1998) 181–212. MR1605817

[OcnPREPRINT] A. Ocneanu, A polynomial invariant for knots: a combinatorial and an algebraic approach, Preprint.

[Oka1998] S. Okada, Applications of minor summation formulas to rectangular-shaped representations of classical groups, J. Algebra 205 (1998) 337–367. MR1632816

[Oko1979] C. Okonek, Das K(π,1)-Problem für die affinen Wurzelsysteme vom Typ An,Cn, Math. Z. 168 (1979), no. 2, 143–148.

[Oko0645496] C. Okonek, Der Conner-Floyd-Isomorphismus fr Abelsche Gruppen, Math. Z. 179 (1982) 201-212, MR0645496.

[OPe1983] M.A. Olshanetsky and A.M. Perelomov, Quantum integrable systems related to Lie algebras, Phys. Rep. 94 (1983), 313-404.

[Opd1995] E. Opdam, Harmonic analysis for certain representations of graded Hecke algebras, Acta Math. 175 (1995), 75–121. MR 98f:33025

[ORa0401317] R. Orellana and A. Ram, Affine braids, Markov traces and the category 𝒪, in Proceedings of the International Colloquium on Algebraic Groups and Homogeneous Spaces Mumbai 2004, V.B. Mehta ed., Tata Institute of Fundamental Research, Narosa Publishing House, Amer. Math. Soc. (2007), 423–473. MR2348913 arXiv:math/0401317

[Ore1999] R. Orellana, Weights of Markov traces on Hecke algebras, J reine angew. Math. 508 (1999), 157–178.

[Osi1954] M. Osima, On the representations of the generalized symmetric group, Math. J. Okayama Univ. 4 (1954), 39-56.

[OSo1980] P. Orlik and L. Solomon, Unitary reflection groups and cohomology, Invent. Math. 59 (1980), 77–94.

[OSo1982] P. Orlik and L. Solomon, Arrangements defined by unitary reflection groups, Math. Ann. 261 (1982), 339-357.

[OSo1983] P. Orlik and L. Solomon, Coxeter arrangements, Proc. Symp. Pure Math. 40 (1983), 269-291.

[OSo2010] E. Opdam and M. Solleveld, Discrete series characters for affine Hecke algebras and their formal degrees, Acta Math. 205 (2010) 105-187. MR2736154 arXiv:0804.0026

[OTe1992] P. Orlik and H. Terao, Arrangements of hyperplanes, Springer-Verlag, Berlin-Heidelberg, 1992.

[OVe1996] A. Okounkov and A. Vershik, A new approach to representation theory of symmetric groups, Selecta Math. (N.S.) 2 no. 4 (1996) 581–605, MR1443185 (99g:20024)

[Owe2002] W. Owens, The Partition Algebra, Honors Thesis, Macalester College, 2002 (May).

[Pal1994] C. Pallikaros, Representations of Hecke algebras of type Dn, J. Algebra 169 (1994), 20–48.

[Pas1989] D. Passman, Infinite crossed products, Pure and Applied Mathematics 135, Academic Press, Inc., Boston, MA, 1989.

[Pen1969] R. Penrose, Angular momentum: an approach to combinatorial space-time, Quantum theory and beyond (T.A. Bastin, eds.), Cambridge Univ. Press, 1969.

[Pen1971] R. Penrose, Applications of negative dimensional tensors, Combinatorial mathematics and its applications (D.J.A. Welsh, eds.), Academic Press, 1971.

[Pit1972] H. Pittie, Homogeneous vector bundles over homogeneous spaces, Topology 11 (1972), 199– 203.

[Pol1999] P. Polo, Construction of arbitrary Kazhdan-Lusztig polynomials in symmetric groups, Representation Theory 3 (1999), 90–104.

[PPo0205621] A. M. Perelomov and V. S. Popov, Casimir operators for the orthogonal and symplectic groups, Jadernaja Fiz. 3 1127–1134 (Russian); translated as Soviet J. Nuclear Phys. 3 (1996) 819–824. MR0205621

[PPo0214703] A. M. Perelomov and V. S. Popov, A generating function for Casimir operators, Dokl. Akad. Nauk SSSR 174 (1967), 1021–1023 (Russian). MR0214703

[PRa0401332] H. Pittie and A. Ram, A Pieri-Chevalley formula in the K-theory of a G/B-bundle, Electronic Research Announcements 5 (1999), 102–107, and A Pieri-Chevalley formula for K(G/B), arXiv:math.RT/0401332.

[Pra1180989] P. Pragacz, Algebro-geometric applications of Schur S and Q polynomials, in Topics in invariant theory (Paris, 1989/1990), Lecture Notes in Math. 1478, Springer, Berlin (1991), 130–191. MR1180989

[PRa1998] H. Pittie, A. Ram, A Pieri–Chevalley formula in the K -theory of flag variety, preprint 1998, http://www.math.wisc.edu/∼ram/preprints.html.

[Pro1976] C. Procesi, The invariant theory of n×n matrices, Adv. in Math. 19 (1976), 330-354.

[Pro1984] R. Proctor, Bruhat lattices, plane partition generating functions, and minuscule representations, European J. Combin. 5 (1984), 331–350.

[Pro1989] R. Proctor, Interconnections between symplectic and orthogonal characters, Contemp. Math., 88 (1989), 145-162.

[Pya1975] V. S. Pyasetskii, Linear Lie groups that act with a finite number of orbits, Funkts. Anal. Prilozhen., 9, No. 4, 85-86 (1975).

[Rai2002] J. Rainbolt, The irreducible representations of the Hecke algebras constructed from the Gelfand-Graev representations of GL(3,q) and U(3,q), Communications in algebra 30 (2002), 4085–4103.

[RamNotes] A. Ram, Notes on Tantalizer algebras, available from http://ms.unimelb.edu.au/∼ram/notes.html.

[Ram0401326] A. Ram, Skew shape representations are irreducible, in Combinatorial and Geometric representation theory, S.-J. Kang and K.-H. Lee eds., Contemp Math. 325 Amer. Math. Soc. 2003, 161-189, MR1988991 (2004f:20014) arXiv:math.RT/0401326.

[Ram0601343] A. Ram, Alcove walks, Hecke algebras, Spherical functions, crystals and column strict tableaux, Pure and Applied Mathematics Quarterly 2 no. 4 (Special Issue: In honor of Robert MacPherson, Part 2 of 3) (2006), 963-1013. MR2282411 and arXiv:math.RT/0601343

[Ram1991] A. Ramanathan, Frobenius splitting and Schubert varieties, in Proceedings of the Hyderabad Conference on Algebraic Groups (Hyderabad, 1989), Manoj Prakashan, Madras, 1991, p. 497–508.

[Ram1991-2] A. Ram, A Frobenius formula for the characters of the Hecke algebras, Invent. Math. 106 (1991), 461–488.

[Ram1991-3] A. Ram, Representation theory and character theory of centralizer algebras, Dissertation, Univ. of Calif., San Diego, 1991.

[Ram1991-4] A. Ram, Ph.D. thesis. Univesity of California, San Diego, 1991.

[Ram1992] A. Ram, Representations of semisimple Lie algebras, Lecture notes, MIT, 1992.

[Ram1994] A. Ram, The second orthogonality relation for characters of Brauer algebras, preprint (1994).

[Ram1995] A. Ram, Characters of Brauer’s centralizer algebras, Pacific J. Math. A. Ram, Characters of Brauer’s centralizer algebras, Pacific J. Math. 169 (1995), 173-200. (1995), 173-200.

[Ram1997] A. Ram, Seminormal representations of Weyl groups and Iwahori-Hecke algebras, Proc. London Math. Soc. (3) 75 (1997), 99-133.

[Ram1997-2] A. Ram, Robinson-Schensted-Knuth insertion and the characters of symmetric groups and Iwahori-Hecke algebras of type A, to appear in the special Festschrift in honor of Gian-Carlo Rota, B. Sagan ed., Birkhauser, Boston, 1997.

[Ram1998] A. Ram, Calibrated representations of affine Hecke algebras, Preprint, 1998, http://www.math.wisc.edu/~ram/preprints.html.

[Ram1998-2] A. Ram, Standard Young tableaux for finite root systems, Preprint, 1998, http://www.math.wisc.edu/~ram/preprints.html.

[Ram1998-3] A. Ram, Irreducible representations of rank two affine Hecke algebras, preprint 1998.

[Ram2002] A. Ram, Representations of rank two affine Hecke algebras, in: Advances in Algebra and Geometry (University of Hyderabad Conference 2001), Hidustan Book Agency, New Delhi, India, 2002, pp. 57–91. MR1986143 arXiv:math/0401327

[Ram2003] A. Ram, Affine Hecke algebras and generalized standard Young tableaux, J. Algebra, 260 (2003), 367-415. MR1976700 arXiv:0401323

[RamSTLD] A. Ram, Symmetric functions for Weyl groups of types B,C,D, stalled.

[RCW1982] A. Rocha-Caridi and N.R. Wallach, Projective modules over graded Lie algebras. I, Math. Z. 180 (1982), no. 2, 151–177. MR0661694

[Ree1997] M. Reeder, Nonstandard intertwining operators and the structure of unramified principal series representations, Forum. Math. 9 (1997) no. 4, 457–516. MR1457135

[Ree2002] M. Reeder, Isogenies of Hecke algebras and a Langlands correspondence for ramified principal series representations, Represent. Theory 6 (2002), 101–126.

[Rem1992] J. Remmel, Formula for the expansion of the Kronecker products S(m,n)S(1p-r,r) and S(1k,2l)S(1p-r,r), Discrete Math. 99 (1992), no 1-3, 265-287.

[Rém2002] B. Rémy, Groupes de Kac-Moody déployés et presque déployés, Astérisque 277 (2002).

[Res1987] N. Yu. Reshetikhin, Quantized universal enveloping algebras, the Yang-Baxter equation and invariants of links I, LOMI Preprint no. E-4-87 (1987).

[Res1990] N. Reshetikhin, Quasitriangle Hopf algebras and invariants of tangles, Leningrad Math. J. 1 (1990), 491–513.

[Reu1993] C. Reutenauer, Free Lie Algebras, in: London Math. Soc. Monogr. (N.S.), Vol. 7, Oxford Univ. Press, New York, 1993.

[RFa1983] N. Reshetikhin and L. Faddeev, TMF, 1983, 56, 323-343 (in Russian).

[Rob1961] G. de B. Robinson, Representation Theory of the Symmetric Group, Toronto, University of Toronto Press, 1961.

[Rod1981] F. Rodier, Décomposition de la série principale des groupes réductifs p-adiques, Noncommutative harmonic analysis and Lie groups (Marseille, 1980), Lect. Notes in Math. 880, Springer, Berlin-New York, 1981, 408–424.

[Rog1985] J.D. Rogawski, On modules over the Hecke algebra of a p-adic group, Invent. Math. 79 (1985) 443–465. MR 86j:22028

[Roi1997] Y. Roichman, A recursive rule for Kazhdan-Lusztig characters, Adv. Math. 129 (1997), 24-45.

[Rou0812.5023] R. Rouquier, 2-Kac-Moody algebras, arXiv:0812.5023

[Rou2006] G. Rousseau, Groupes de Kac-Moody déployés sur un corps local, immeubles microaffines, Comp. Math. 142 (2006), 501–528.

[RRa0401322] A. Ram and J. Ramagge, Affine Hecke algebras, cyclotomic Hecke algebras and Clifford theory, in A tribute to C.S. Seshadri: Perspectives in Geometry and Representation theory, V. Lakshimibai et al eds., Hindustan Book Agency, New Delhi (2003), 428-466, MR2017596, arXiv:math.RT/0401322.

[RRa1998] A. Ram and J. Ramagge, Jucys-Murphy elements come from affine Hecke algebras, in preparation, 1998.

[RRa1998-2] A. Ram and J. Ramagge, Calibrated representations and the q-Springer correspondence, in preparation, 1998.

[RRa2003] A. Ram, J. Ramagge, Affine Hecke algebras, cyclotomic Hecke algebras and Clifford theory, to appear in: V. Lakshmibai, R. Sridharan (Eds.), A volume in honor of the 70th birthday of C.S. Seshadri, 2003.

[RSi0607266] H. Rui and M. Si, Gram determinants and semisimplicity criteria for Birman-Wenzl algebras, J. Reine Angew. Math. 631 (2009) 153–179. MR2542221 arXiv:math.QA/0607266

[RSi2418167] H. Rui and M. Si, On the structure of cyclotomic Nazarov-Wenzl algebras, J. Pure Appl. Algebra 212 (2008) 2209–2235. MR2418167

[RSi2912472] H. Rui and M. Si, The representations of cyclotomic BMW algebras, II, Algebr. Represent. Theory 15 (2012), no. 3, 551–579. MR2912472 arXiv:0807.4149v1

[RTF1015339] N. Yu. Reshetikhin, L.A. Takhtadzhyan and L.D. Faddeev, Quantization of Lie groups and Lie algebras, Algebra i Analiz 1 (1989) 178-206 and Leningrad Math. J. 1 (1990), 193-225. MR1015339

[RTi2010] A. Ram and P. Tingley, Universal Verma modules and the Misra-Miwa Fock space, Int. J. Math. Sci. 2010, Art. ID 326247, 19 pp.

[RTu1990] N. Yu. Reshetikhin and V. G. Turaev, Ribbon graphs and their invariants derived from quantum groups, Comm. Math. Phys. 127 (1990), 1-26.

[RTu1991] N. Reshetikhin and V. Turaev, Invariants of 3-manifolds via link polynomials and quantum groups, Invent. Math. 103 (1991), 547–597.

[RTW1932] G. Rumer, E. Teller, H. Weyl, Eine fur die Valenztheorie geeignete Basis ber binären Vektor-invarianten, Nachr. Ges. Wiss. Göttingen Math.-Phys. Kl., 1932, pp. 499-504.

[Rud1991] W. Rudin, Functional Analysis, Second Edition, McGraw Hill, 1991 ISBN 0-07-100944-2

[Rut1948] D.E. Rutherford, Substitutional Analysis, Edinburgh, at the University Press, 1948.

[RWe1992] A. Ram and H. Wenzl, Matrix units for centralizer algebras, J. Algebra 102 (1992), 378-395.

[RXu0702633] H. Rui and J. Xu, On the semisimplicity of cyclotomic Brauer algebras, II, J. Algebra 312 (2007) 995–1010. MR2333197 arXiv:math.QA/0702633

[RXu0801.0465] H. Rui and J. Xu, The representations of cyclotomic BMW algebras, J. Pure Appl. Algebra 213 (2009) 2262–2288. MR2553602 arXiv:0801.0465

[RYi0803.1146] A. Ram and M. Yip, A combinatorial formula for Macdonald polynomials, arXiv:0803.1146.

[Ryo2004] S. Ryom-Hansen, Grading the translation functors in type A, Journal of Algebra, vol. 274, no. 1, pp. 138–163, 2004.

[Sag1991] B. Sagan, The symmetric group, Representations, combinatorial algorithms, and symmetric functions, The Wadsworth & Brooks/Cole Mathematics Series, Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove, CA, 1991.

[Sah1999] S. Sahi, Nonsymmetric Koornwinder polynomials and duality, Ann. Math. 150 (1999) no. 1, 267-282. MR1715325

[Sai1985] K. Saito, Extended affine root systems I, Publ. RIMS. Kyoto Univ. 21 No. 1 (1985), 75-179.

[Sai2000] Y. Saito, Geometric construction of crystal bases II, preprint 2000, arXiv:math/0111232v1 [math.QA]

[Sam1969] H. Samelson, Notes on Lie algebras, Van Nostrand Reinhold Mathematical Studies, vol. 23, Van Nostrand Reinhold, New York, 1969.

[Sap1972] N. N. Šapovalov, A certain bilinear form on the universal enveloping algebra of a complex semisimple Lie algebra, Funkcional’nyi Analiz i ego Priloženija, vol. 6, no. 4, pp. 65–70, 1972.

[Sat1963] I. Satake, Theory of spherical functions on reductive algebraic groups over p-adic fields, Publ. Math. I.H.E.S. no. 18 (1963), 1-69.

[Sch0506287] C. Schwer, Galleries, Hall-Littlewood polynomials, and structure constants of the spherical Hecke algebra, Int. Math. Res. Not. (2006) Art. ID 75395, MR2264725 arXiv:math.CO/0506287

[Sch1901] I. Schur, Über eine Klasse von Matrizen, die sich einer gegeben Matrix zuornen lassen, Dissertation, 1901; reprinted in Gessamelte Abhandlungen 1, 1-72.

[Sch1927] I. Schur, Ü die rationalen Darstellungen der allgemeinen linearen Gruppe, Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin (1927), 58-75; reprinted in Gessamelte Abhandlungen 3, 68-85.

[Sch1963] J. T. Schwartz, Differential Geometry and Topology, New York, Gordon and Breach, 1963.

[Sch1976] M. Schutzenberger, La correspondence de Robinson, Lecture Notes, vol. 579, Springer, Berlin, 1976.

[Sch1978] M.P. Schützenberger, Propriétés nouvelles des tableaux de Young, Séminaire Delange-Pisot-Poitou, 19e année 1977-1978, no. 26 Secréteriat Mathématique, Paris (1978).

[Sch1979] M. Scheunert, The theory of Lie superalgebras: An introduction, Lecture Notes in Mathematics 716, Springer-Berlin, 1979.

[Sch1995] Martin Schnert et.al., GAP – Groups, Algorithms, and Programming, Lehrstuhl D für Mathematik, Rheinisch Westfälische Technische Hochschule, Aachen, Germany, fifth edition, 1995.

[Sch2006] C. Schwer, Ph.D. Thesis, University of Wuppertal, 2006.

[Ser1977] J.-P. Serre, Linear Representations of Finite Groups, Springer-Verlag, New-York, 1977.

[Ser1984] A.N. Sergeev, Representations of the Lie superalgebras 𝔤𝔩(n,m) and Q(n) in a space of tensors, Funct. Anal. App. 18 (1984), 80-81.

[Ser1987] J.-P. Serre, Complex Semisimple Lie algebras, Translated from the French by G. A. Jones, Springer-Verlag, New York-Berlin, 1987.

[Ser1997] V. Serganova, Kazhdan-Lusztig polynomials and character formula for the Lie superalgebra 𝔤𝔩(m|n), preprint 1997.

[Sha1006.1545] P. Shan, Graded decomposition matrices of v-Schur algebras via Jantzen filtration, arXiv:1006.1545

[Sha1972] N.N. Shapovalov, On a bilinear form on the universal enveloping algebra of a complex semisimple Lie algebra, Funct. Anal. Appl. 6 (1972), 307-312.

[Sha1996] I.R. Shafarevich, Basic algebraic geometry 2: Schemes and complex manifolds, Second edition, Springer-Verlag, Berlin, 1996.

[Shi1987] J.-Y. Shi, Sign types corresponding to an affine Weyl group, J. London Math. Soc. (2) 35 (1987) 56–74.

[Shi1994] J.-Y. Shi, Left cells in affine Weyl groups, Tôhoku Math. J. (2) 46 (1) (1994) 105–124.

[Shi1997] J.-Y. Shi, The number of ⊕-sign types, Quart. J. Math. Oxford Ser. (2) 48 (1997) 93–105.

[Sho1979] T. Shoji, On the Springer representations of the Weyl groups of classical algebraic groups, Comm. Algebra 7 (1979), 1713–1745.

[Sho1987] T. Shoji, Green functions of reductive groups over a finite field, Proc. Symp. Pure Math. 47 (1987), 289-301.

[Sho2001] T. Shoji, Green functions associated to complex reflection groups I and II, J. Algebra 245 (2001), 650-694, J. Algebra, in press.

[Skl1982] E. Sklyanin, Func. Anal. and Appl., 1982, 16, N 4, 27-34 (in Russian).

[Skl1985] E. Sklyanin, Usp. Math. Nauk, 1985, 40, N 2, 214 (in Russian).

[SklNONE] E. Sklyanin, ibid, 17, 4, 34-48 (in Russian)..

[Smi1986] F. Smirnov, General formula for solution formfactors in Sine-Gordon, Model. J. Phys. A Math. Gen. 19 (1986). L575-L580.

[Soe1997] W. Soergel, Kazhdan-Lusztig polynomials and a combinatoric for tilting modules, Representation Theory 1 (1997) 83-114.

[Soe1998] W. Soergel, Character formulas for tilting modules over Kac-Moody algebras, Representation Theory 2 (1998), 432-448.

[Soe2000] W. Soergel, On the relation between intersection cohomology and representation theory in positive characteristic, Journal of Pure and Applied Algebra 152 (2000), 311-335.

[Soe2329762] W. Soergel, Kazhdan-Lusztig-Polynome und unzerlegbare Bimoduln ber Polynomringen, J. Inst. Math. Jussieu 6 (2007) 501525. MR2329762.

[Sol1963] L. Solomon, Invariants of Finite Reflection Groups, Nagoya Math. Journal, Vol. 22, June 1963, pp. 57-64.

[Sol1966] L. Solomon, The Orders of the Finite Chevalley Groups, Journal of Algebra, Vol. 3, No. 3, May 1966, pp. 376-393.

[Sol1976] L. Solomon, A Mackey formula in the group ring of a Coxeter group, J. Algebra 41 (2) (1976) 255–264.

[Sol1990] L. Solomon, The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field, Geom. Dedicata 36 (1990), 15-49.

[Sol1995] L. Solomon, Abstract No. 900-16-169, Abstracts presented to the American Math. Soc., Vol. 16, No. 2, Spring 1995.

[Sol1997] L. Solomon, H. Terao, The double Coxeter arrangement, Preprint, 1997.

[Sol2012] M. Solleveld, On the classification of irreducible representations of affine Hecke algebras with unequal parameters, Representation Theory 16 (2012) 1–87. MR2869018 arXiv:1008.0177

[Spa1976] N. Spaltenstein, On the fixed point set of a unipotent transformation on the flag manifold, Proc. Kon. Nederl. Akad. Wetensch. 79 (1976), 452-456.

[Spe1932] W. Specht, Eine Verallgemeinerung der symmetrischen Gruppe, Schriften Math. Seminar Berlin 1 (1932), 1–32.

[Spr1968] T.A. Springer, Weyl's character formula for algebraic groups, Inventiones Math., 5 (1968), 85-105.

[Spr1974] T.A. Springer, Regular Elements of Finite Reflection Groups, Mathematisch Instituut Der Dijksuniversiteit te Utrecht, 1973

[Spr1977] T.A. Springer, Invariant theory, Lecture Notes in Mathematics 585, Springer, Berlin, etc. 1977.

[Spr1978] T. Springer, A Construction of Representations of Weyl Groups, Invent. Math. 44 (1978), 279-293.

[SSh1999] M. Sakamoto and T. Shoji, Schur-Weyl reciprocity for Ariki-Koike algebras, J. Algebra 221 (1999), no. 1, 293–314.

[SSt1970] T.A. Springer and R. Steinberg, Conjugacy classes, Lecture Notes in Math. 131 (1970), 167-266. MR42:3091
Translation: Seminar po algebraicheskim gruppam, Mir, Moscow 1973, 162-262.

[SSt1993] S. Shnider and S. Sternberg, Quantum groups: From coalgebras to Drindel'd algebras. A guided tour., Graduate Texts in Mathematical Physics Vol. 2, International Press, Cambridge, MA, 1993. xxii+496 pp. ISBN: 1-57146-000-4 MR1287162 (95e:17022).

[Sta1971] R. P. Stanley, Theory and application of plane partitions. I, II, Studies in Appl. Math. 50 (1971), 167-188, 259-279.

[Sta1976] R. P. Stanley, Some combinatorial aspects of the Schubert calculus, Lecture Notes, vol. 579, Springer, Berlin, 1976.

[Sta1982] R. P. Stanley, Some aspect of groups acting on finite posets, J. Combin. Theory Ser. A 32 (1982), 132-161.

[Sta1984] R. P. Stanley, On the number of reduced decompositions of elements of Coxeter groups, Eur. J. Comb. 5 (1984) 359-372.

[Sta1985] R. Stanley, Letter to Phil Hanlon, 1985.

[Sta1986] R. Stanley, Enumerative combinatorics, vol 1. Wadsworth and Brooks/Cole (1986).

[Sta1986-2] R.P. Stanley, Symmetries of plane partitions, J. Combin. Theory Ser. A 46 (1986) 103–113. MR0859302

[Sta1988] R. Stanley, Differential posets, J. Amer. Math. Soc. 1 (1988), 919-961.

[Sta1996] R. Stanley, Hyperplane arrangements, interval orders, and trees, Proc. Nat. Acad. Sci. USA 93 (1996) 2620–2625.

[Sta1997] R. Stanley, Enumerative Combinatorics, Cambridge Studies in Adv. Math. 49, vol. 1, 1997.

[STa1997] K. Saito and T. Takebayashi, Extended affine roots systems III. Elliptic Weyl groups, Publ. Res. Inst. Math. Sci. 33 (1997), no. 2, 301-329.

[Sta1998] R. Stanley, Hyperplane arrangements, parking functions and tree inversions, in: Mathematical Essays in Honor of Gian-Carlo Rota, Birkhäuser, Boston, 1998.

[Ste1951] R. Steinberg, A Geometric Approach to the Representations of the Full Linear Group over a Galois Field, Transactions of the American Mathematical Society 41 (1951), 279-282.

[Ste1959] R. Steinberg, Variations on a Theorem of Chevalley, Pacific Journal of Mathematics, 9 (1959), 875-891.

[Ste1964] R. Steinberg, Differential equations invariant under finite reflection reflection groups, Trans. Amer. Math. Soc. 112 (1964), 392–400. MR 29:4807

[Ste1967] R. Steinberg, Lectures notes on Chevalley groups, Yale University, (1967).

[Ste1968] R. Steinberg, Lectures on Chevalley groups, Notes prepared by John Faulkner and Robert Wilson, Yale University, New Haven, CT, 1968.

[Ste1968-2] R. Steinberg, Endomorphisms of linear algebraic groups, Mem. Amer. Math. Soc. 80 (1968) 1–108.

[Ste1975] R. Steinberg, On a theorem of Pittie, Topology 14 (1975) 173–177. MR 51:9101

[Ste1987] J. Stembridge, Rational tableaux and the tensor algebra of 𝔤𝔩n, J. Combin. Theory Ser. A 46 (1987) 79-120.

[Ste1987] J. Stembridge, unpublished notes, 1987.

[Ste1989] J. Stembridge, A combinatorial theory for rational actions of GLn, Contemp. Math., 88 (1989) 163-176.

[Ste1989-2] J. Stembridge, On the eigenvalues of representations of reflection groups and wreath products, Pacific J. Math. 140 (1989), 353-396.

[Ste1994] J. Stembridge, On miniscule representations, plane partitions and involutions in complex Lie groups, Duke Math. J. 73 (1994), 469-490.

[Ste1994-2] J. Stembridge, Some hidden relations involving the ten symmetry classes of plane partitions, J. Combin. Theory Ser. A 68 (1994), 372–409.

[Ste1995] J. Stembridge, The enumeration of totally symmetric plane partitions, Adv. Math. 111 (1995), 227–243.

[STF1979] E. Sklyanin, L. Takhtajan and L. Faddeev, TMF, 1979, 40, N 2, 194-220 (in Russian).

[STo1954] G. C. Shephard and J.A. Todd, Finite unitary reflection groups, Canadian Journal of Math. 6 (1954), 274–304.

[STS1985] M. Semenov-Tian-Shansky, Publ. RIMS Kyoto Univ., 1985, 21, 6, 1237-1260.

[Stu1971] U. Stuhler, Unipotente und nilpotente Klassen in einfachen Gruppen und Liealgebren vom typ G2, Indag. Math. 74 (1971), 365–378.

[SUe1991] Y. Shibukawa and K. Ueno, Character table of Hecke algebra of type AN-1 and representations of the quantum group Uq(𝔤𝔩n+1), in Infinite Analysis (Kyoto,1991), Adv. Ser. Math. Phys. 16, World Sci. Publishing, River Edge, NJ, (1992), 977-984.

[Sun1987] V. S. Sunder, A model for AF algebras and a representation of the Jones projections, J. Operator Theory 18 (1987), 289-301.

[Sun1990] S. Sundaram, Tableaux in the representation theory of the classical Lie groups, in: Invariant Theory and Tableaux, Minneapolis, MN, 1988, IMA Vol. Math. Appl., Vol. 19, Springer-Verlag, New York, 1990, pp. 191–225.

[Sun1990-2] S. Sundaram, Orthogonal tableaux and an insertion algorithm for SO(2n+1), J. Combin. Theory Ser. A 53 (1990), 239-256.

[Sun1990-3] S. Sundaram, The Cauchy identity for Sp(2n), J. Combin. Theory Ser. A 53 (1990), 209-238.

[Sut1971] B. Sutherland, Exact results for a quantum many-body problem in one-dimension, Phys. Rev. A4 (1971), 2019-2021. Phys. Rev. A5 (1971), 1372-1376.

[Suz1998] T. Suzuki, Rogawski’s conjecture on the Jantzen filtration for the degenerate affine Hecke algebra of type A, Representation Theory 2 (1998), 393–409.

[Suz2000] T. Suzuki, Representations of degenerate affine Hecke algebra and 𝔤𝔩n, in Combinatorial methods in representation theory (Kyoto, 1998), Adv. Stud. Pure Math. 28 (2000), 343–372.

[Swe1969] M.E. Sweedler, Hopf algebras, Benjamin, New York, 1969.

[Tam1960] T. Tamagawa, On Selberg's trace formula, J. Fac. Sci., Univ. of Tokyo 8 (1960), 363-386.

[Tan1982] T. Tanisaki, Defining ideals of the closures os conjugacy classes and representations of Weyl groups, Tohoku Math. J. 34 (1982), 575-585.

[Tan1992] T. Tanisaki, Killing forms, Harish-Chandra isomorphisms and universal -matrices for quantum algebras, in 'Infinite Analysis', A. Tsuchiya, T. Eguchi and M. Jimbo (eds), Advanced Series in Mathematical Physics 16, pp. 941-962, World Scientific, Singapore, 1992.

[Tat1967] J.T. Tate, Fourier analysis in number fields and Hecke's zeta-functions, reproduced in Algebraic Number Theory (eds. J.W.S.-Cassels and A. Fröhlich), Academic Press (1967).

[TFa1979] L.A. Takhtajan and L.D. Faddeev, The quantum method of the inverse problem and the Heisenberg XYZ model, Usp. Math. Nauk, 1979, 34, N 5, 11-68, (in Russian).

[Tit0873684] J. Tits, Uniqueness and presentation of Kac-Moody groups over fields, J. Algebra, 105 No.2, 1987, 542–573, MR0873684 (89b:17020).

[Tit1966] J. Tits, Sur les constantes de sturcute et le théorème d’existence des algèbres de Lie semi-simples, Institut des Hautes Études Scientifiques, Publications Mathématiques 31 (1966), 21–58.

[Tit1968] J. Tits, Le problème des mots dans les groupes de Coxeter, Istituto Nazionale di Alta Matematica, Symposia Mathematica, Vol.1 175-185 (1968).

[Tit1969] J. Tits, Algebraic and Abstract Simple Groups, Annals of Mathematics, 80 (1969), 313-329.

[TKa1988] A. Tsuchiya and Y. Kanie, Vertex operators in conformal field theory on P1 and monodromy representations of braid groups, Adv. Stud. Pure. Math. 16 (1988), pp. 297-372.

[TLi1971] N.Temperley, E. Lieb, Relations between the “percolation” and “colouring” problem and other graph theoretical problems associated with regular plane lattices: Some exact results for the “percolation” problem, Proc. Roy. Soc. London Ser. A, 322 (1971), 547-597.

[Tot1937794] B. Totaro, Towards a Schubert calculus for complex reflection groups, Math. Proc. Camb. Phil. Soc. 134 (2003) 83-93. MR1937794
http://www.dpmms.cam.ac.uk/∼bt219/papers.html

[Tot2330522] B. Totaro, The elliptic genus of a singular variety, in Elliptic cohomology, 360–364, London Math. Soc. Lecture Note Ser. 342 Cambridge Univ. Press, Cambridge, 2007, MR2330522.

[TTh1974] R. C. Thompson and S. Therianos, On a construction of B. P. Zwahlen, Linear and Multilinear Algebra 1 (1974), 309-325.

[Tur1988] V. Turaev, The Yang-Baxter equation and invariants of links, Invent. Math. 92 (1988), 527–553.

[Tur1990] V. Turaev, The Conway and Kauffman modules of the solid torus, J. Soviet Math. 52, no. 1 (1990), 2806–2807; also in Progress in knot theory and related topics, 90–102, Travaux en Cours 56, Hermann, Paris, 1997.

[TWe1217386] V. Turaev and H. Wenzl, Quantum invariants of 3-manifolds associated with classical simple Lie algebras, Int. J. of Math. 4, No. 2 (1993), 323–358. MR1217386

[Tym0604578] J. Tymoczko, Permutation representations on Schubert varieties, Amer. J. Math. 130 (2008) 1171–1194, MR2450205, arXiv:0604578.

[Var1984] V.S. Varadarajan, Lie groups, Lie algebras, and Their Representations, Graduate Texts in Mathematics 102, Springer-Verlag, New York-Berlin, 1984.

[vdJ1991] J. van der Jeugt, An algorithm for characters of Hecke algebras Hn(q) of type An-1, J. Phys. A 24 (1991), 3719–3725.

[Vel1970] F. D. Veldkamp, Representations of algebraic groups of type F4 in characteristic 2, J. Algebra, 16 (1970), 326-339.

[Ver1966] D.-N. Verma, Structure of certain induced representations of complex semisimple Lie algebras, Dissertation, Yale University, New Haven, 1966.

[Ver1968] D.-N. Verma, Structure of certain induced representations of complex semisimple Lie algebras, (announcement of [Ver1966]), Bull. Amer. Math. Soc., 74 (1968), 160-166.

[Ver1971] D.-N. Verma, Möbius inversion for the Bruhat ordering on a Weyl group, Ann. Sci. École Norm. Sup. 4-série, 4 (1971), 393-398.

[Ver1972] D.-N. Verma, A strengthening of the exchange property of Coxeter groups, to appear, 1972.

[Ver1972-2] D.-N. Verma, A note on Chevalley lattice and its Kostant envelope, in preparation, 1972.

[Ver1972-3] D.-N. Verma, Exponentiating the projective modules of the u-algebra associated to an algebraic Chevalley group, in preparation, 1972.

[Ver1976] J.L. Verdier, Stratification de Whitney et Théorème de Bertini-Sard, Invent. Math. 36 (1976), 395-412.

[Ver1984] D.-N. Verma, A New BGG style resolution conjectured, preprint (1984).

[Vin1971] E.B. Vinberg, Discrete linear groups that are generated by reflections, Math. USSR Izvestija, Vol. 5, No. 5, (1971), 1083-1119.

[Vin1971-2] E.B. Vinberg, Rings of definition of dense subgroups of semisimple linear groups, Izv. Akad. Nauk SSSR. Ser. Math. Tom 35 (1971) p. 45-55.

[VKe1984] A. Vershik and S. Kerov, Characters, factor representations and K-functor of the infinite symmetric group, Proc. Int. Conf. on Oper. Algebras and Group Repres., vol. II Romania 1980. (Monogr. Stud. Math., vol. 13, pp. 23-34) 1984.

[VKe1989] A. Vershik and S. Kerov, Characters and realizations of representations of the infinite-dimensional Hecke algebra, and knot invariants, Soviet Math. Dokl. 38, (1989), 134–137.

[Vog1981] D. Vogan, Representations of real reductive Lie groups, Progress in Mathematics 15, Birkhuser, Boston, Mass., 1981.

[Vog1987] D. Vogan, Unitary representations of reductive Lie groups, Annals of Mathematics Studies 118, Princeton University Press, Princeton, NJ, 1987.

[VSoNONE] L. Vaksman and J. Soibelman, Funct. Anal. and Appl. (to appear).

[VVa1996] M. Varagnolo and E. Vasserot, Schur duality in the toroidal setting, Comm. Math. Phys. 182 2 (1996) 469–483. MR1447301 arXiv:q-alg/9506026

[Wac1985] M. L. Wachs, Flagged Schur functions, Schubert polynomials and symmetrizing operators, J. Comb. Theory (Λ) 40 (1985) 276-289.

[Wak1793723] M. Wakimoto, Infinite-dimensional Lie algebras, Translations of Mathematical Monographs 195 American Mathematical Society, Providence, RI, 2001. ISBN: 0-8218-2654-9, MR1793723 (2001k:17038).

[Wak1873994] M. Wakimoto, Lectures on infinite-dimensional Lie algebra, World Scientific Publishing Co., Inc., River Edge, NJ, 2001. ISBN: 981-02-4128-3, MR1873994 (2003b:17033).

[Wal1988] N. Wallach, Real reductive groups I, Pure and Applied Mathematics 132, Academic Press, Inc., Boston, MA, 1988. MR 89i:22029

[Wal1992] N. Wallach, Real Reductive Groups II, Pure and Applied Mathematics, 132, Academic Press, Inc., Boston, MA, 1992.

[Wau1995] D. Waugh, Quotients of Coxeter groups under the weak order, Ph.D. Thesis, University of Michigan (1995).

[Wei1935] A. Weil, Demonstration topologique d’un théorème fondamental de Cartan, C.R. Acad. Sci. 200 (1935), 518–520.

[Wei1952] A. Weil, Sur les théorèmes de De Rham, Comm. Math. Helv. 26, (1952), 119-145.

[Wen1985] H. Wenzl, Representations of Hecke algebras and subfactors, Thesis, Univ. of Pennsylvania (1985).

[Wen1988] H. Wenzl, Hecke algebras of type An and subfactors, Invent. Math. 92 (1988), no. 2, 349–383.

[Wen1988-2] H. Wenzl, On the structure of Brauer’s centralizer algebras, Ann. Math. 128 (1988), 173-193.

[Wen1990] H. Wenzl, Quantum groups and subfactors of type B, C, and D, Commun. Math. Phys. 133 (1990), 383-432.

[Wen1993] H. Wenzl, Braids and invariants of 3-manifolds, Invent. Math. 114 (1993), 235-276.

[Wey1912] H. Weyl, Das asyumptotische Verteilungsgesatz der Eigenwerte linear partieller Differentialgleichungen (mit iener Anwendung auf die Theorie der Hohlraumstrahlung), Math. Ann., 71 (1912), 441-479.

[Wey1925-26] H. Weyl, Theorie der Darstellung kontinuerlicher halb-einfacher Gruppen durch lineare Transformationen I, II, III, Mathematische Zeitschrift 23, 24, (1925-26), 271-309, 328-376, 377-395.

[Wey1946] H. Weyl, The classical groups, their invariants and their representations, Princeton University Press, Princeton, 1946. MR0000255

[Wey1946-2] H. Weyl, Classical Groups, Princeton University Press, 1946.

[Wey1989] J. Weyman, The equations of conjugacy classes of nilpotent matrices, Invent. Math. 98 (1989), 229–245.

[Wie1955] H. Wielandt, An extreme property of sums of eigenvalues, Proc. Amer. Math. Soc. 6 (1955), 106-110.

[Wie2005] E. Wiesner, Translation Functors and the Shapovalov Determinant, PhD Thesis, University of Wisconsin, Madison 2005.

[Wil0311079] M. Willems, Cohomologie équivariante des tours des Bott et calcul de Schubert équivariant, J. Inst. Math. Jussieu 5 (2006) 125--159, arXiv:0311079, MR2195948.

[Wil0412152] M. Willems, K-théorie équivariante des tours des Bott. Application à la structure multiplicative de la K-théorie équivariante des variétes des drapeaux, Duke Math. J. 132 (2006) 271--309, arXiv:math.AG/0412152, MR2219259.

[Won1971] W. J. Wong, Representations of Chevalley groups in characteristic p, in Proc. of Symposia in Pure Mathematics, Vol. XXI, AMS, Providence, 1971.

[Wor1987] S. Woronowicz, Publ. RIMS, Kyoto Univ., 1987, 23, 117-181.

[WYu0611518] S. Wilcox and S. Yu, The cyclotomic BMW algebra associated with the two string type B braid group, to appear in Communications in Algebra, arXiv:math.RT/0611518.

[WYu0911.5284] S. Wilcox and S. Yu, On the freeness of the cyclotomic BMW algebras: admissibility and an isomorphism with the cyclotomic Kauffman tangle algebras, arXiv:0911.5284.

[Xi1994] N. Xi, Representations of Affine Hecke Algebras, Lecture Notes in Math., Vol. 1587, Springer-Verlag, Berlin, 1994.

[Xi1999] C. Xi, Partition algebras are cellular, Compositio Math. 119 (1) (1999) 99–109.

[Yan1967] C.N. Yang, Phys. Rev. Lett. 1967, 19, N 23, p. 1312-1314.

[Yip2010] M. Yip, PhD thesis, University of Wisconsin, Madison, 2010

[Yok1968] T. Yokonuma, Sur le commutant d’une représentation d’un groupe de Chevalley fini, Journal of the Faculty of Science, University of Tokyo 15 (1968), 115–129.

[Yok1969] T. Yokonuma, Complément au mémoire “Sur le commutant d’une représentation d’un groupe de Chevalley fini”, Journal of the Faculty of Science, University of Tokyo 16 (1969), 147–148.

[Yok1969-2] T. Yokonuma, Sur le commutant d’une représentation d’un groupe de Chevalley fini II, Journal of the Faculty of Science, University of Tokyo 16 (1969), 65–81.

[You1900] A. Young, On Quantitative Substitutional Analysis (First paper), Proc. London Math. Soc. 33 (1900), 97-146.

[You1901-1952] A. Young, On Quantitative substitutional analysis I-IX, Proc. London Math. Soc. (1901-1952), reprinted in The Collected Papers of Alfred Young 1873-1940, Mathematical Exposition No. 21 U. of Toronto Press, (1977).

[You1902] A. Young, On Quantitative Substitutional Analysis (Second paper), Proc. London Math. Soc. 34 (1902), 361-397.

[You1929] A. Young, On quantitative substitutional analysis (Fifth paper), Proc. London. Math. Soc. (2) 31 (1929) 273–288.

[You1930] A. Young, On quantitative substitutional analysis (Fourth paper), Proc. London. Math. Soc. (2) 31 (1930) 253–272.

[You1931] A. Young, On quantitative substitutional analysis (Sixth paper), Proc. London. Math. Soc. (2) 34 (1931) 196–230.

[You1934] A. Young, On quantitative substitutional analysis (Eighth paper), Proc. London. Math. Soc. (2) 37 (1934), 441-495.

[You1977] A. Young, The Collected Papers of Alfred Young 1873–1940, Math. Expositions, Vol. 21, University of Toronto Press, 1977.

[Yu0810.0069] S. Yu, The cyclotomic Birman-Murakami-Wenzl algebras, Ph.D. Thesis, University of Sydney (2007). arXiv:0810.0069.

[Zam1978] A.B. Zamolodchikov, Relativistic factorized S-matrix in two dimensions having O(N) isotopic symmetry, Nuclear Physics B133 (1978) 525.

[Zam1979] A. Zamolodchikov and Al. Zamolodchikov, Annals of Physics 1979, 120, N 2, 253-291.

[Zel1977] A. V. Zelevinskii, Classification of irreducible noncuspidal representations of the group GLn over a 𝔭-adic field, Funkts. Anal. Prilozhen., 11, No. 1, 67-68 (1977).

[Zel1977-2] A. V. Zelevinskii, The ring of representations of the group GL(n) over a 𝔭-adic field, Funkts. Anal. Prilozhen., 11, No. 3, 78-79 (1977).

[Zel1980] A. Zelevinsky, Induced representations of 𝔭-adic groups II: On irreducible representations of GL(n), Ann. Sci. École Norm. Sup. Ser. (4) 13 (1980) 165–210.

[Zel1981] A. V. Zelevinskii, A p-adic analogue of the Kazhdan-Lusztig conjecture, Funktsional. Anal, i Prilozhen. 15:2 (1981), 9-21. MR84g:22039

[Zel1981-2] A. Zelevinsky, Representations of finite classical groups, Springer Verlag, New York, 1981.

[Zel1985] A. Zelevinsky, Two remarks on graded nilpotent classes, Russ. Math. Surv. 40 (1985), 249-250.

[Zel1987] A.V. Zelevinskii, Resolvents, dual pairs and character formulas, Funct. Anal. Appl. 21, (1987) 152-154. MR09022299

[Zel1987-2] A.V. Zelevinskii, Funktsion. Anal. Prilozhen., 21, No. 2, 74-75 (1987).

[Zeh1973] D. P. Zhelobenko, Compact Lie groups and their representations, Translated from the Russian by Israel Program for Scientific Translations. Translations of Mathematical Monographs, Vol. 40. American Mathematical Society, Providence, RI (1973). MR0473097

[Zhe1970] D. P. Zhelobenko, Compact Lie Groups and Their Representations [in Russian], Nauka, Moscow (1970).

[Zhe1987] D. P. Zhelobenko, An analogue of the Gelfand-Tsetlin basis for symplectic Lie algebras, Russian Math. Surveys 42 (1987), 247–248.

[Zwa1966] B. P. Zwahlen, Uber die Eigenwerte der summe zweir selbadjungierter Operatoren, Comment. Math. Helv., 40 (1966), 81-116.

page history