Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville, VIC 3010 Australia
aram@unimelb.edu.au
Last updates: 02 February 2011
The Tetrahedral Group
The group can be given in at least two natural ways. In the following tables we shall use one-line notation to represent the permutations in
Set
Operation
even permutations in
composition of permutations
rotations preserving a tetrahedron
compositions of rotations
Center
Abelian
Conjugacy classes
No
Subgroups
Element
Order
Centralizer
Conjugacy Class
Generators
Relations
Realization
Subgroups
Structure
Index
Normal
Quotient group
Yes
Yes
No
No
No
No
No
No
No
Yes
Subgroup
Normalizer
Centralizer
Let be a primitive cube root of given by
Homomorphism
Kernel
References
[CM]
H. S. M. Coxeter and W. O. J. Moser, Generators and relations for discrete groups,
Fourth edition. Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], 14. Springer-Verlag, Berlin-New York, 1980.
MR0562913 (81a:20001)
[GW1]
F. Goodman and H. Wenzl,
The Temperly-Lieb algebra at roots of unity, Pacific J. Math. 161 (1993), 307-334.
MR1242201 (95c:16020)