The Tetrahedral Group

The Tetrahedral Group A4

Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville, VIC 3010 Australia
aram@unimelb.edu.au

Last updates: 02 February 2011

The Tetrahedral Group A4

The group A4 can be given in at least two natural ways. In the following tables we shall use one-line notation to represent the permutations in A4

Set Operation
even permutations in S4 composition of permutations
rotations preserving a tetrahedron compositions of rotations

Center Abelian Conjugacy classes
ZA4= 1234 No 𝒞14 = 1234
𝒞22 = 2134, 3412, 4321
𝒞31+ = 3124, 4213, 2431, 1342
𝒞31- = 2314, 3241, 4132, 1423

Subgroups
H0=A4
H1= 1234, 2143, 3412, 4321
H2= 1234, 3124, 2314
H3= 1234, 4132, 2431
H4= 1234, 4213, 3241
H5= 1234, 1423, 1342
H6= 1234, 3412
H7= 1234, 2143
H8= 1234, 4321
H8= 1234

Element g Order οg Centralizer Zg Conjugacy Class 𝒞g
1234 1 A4 𝒞14
2143 2 H1 𝒞22
3412 2 H1 𝒞22
4321 2 H1 𝒞22
3124 3 H2 𝒞31+
4213 3 H4 𝒞31+
2431 3 H3 𝒞31+
1342 3 H5 𝒞31+
2314 3 H2 𝒞31-
3241 3 H4 𝒞31-
4132 3 H3 𝒞31-
1423 3 H5 𝒞31-

Generators Relations Realization
S,T S3=T2= ST3=1 S=2314, T=2143

Subgroups Hi Structure Index Normal Quotient group
H0= A4 H0=A4 A4:A4 = 1 Yes A4 /H0 1
H1= 1234, 2143, 3412, 4321 H1 μ2×μ2 A4:H1 = 3 Yes A4 /H1 μ3
H2= 1234, 3124, 2314 H2 μ3 A4:H2 =4 No
H3= 1234, 4132, 2431 H3 μ3 A4:H3 =4 No
H1= 1234, 4213, 3241 H4μ3 A4:H4 =4 No
H5= 1234, 1423, 1342 H5=μ3 A4:1 =4 No
H6= 1234, 3412 H6=μ2 A4:1 =6 No
H7= 1234, 2143 H7=μ2 A4:1 =6 No
H8= 1234, 4321 H8=μ2 A4:1 =6 No
H9= 1234 H9=1 A4:1 =12 Yes A4/1A4

Orders Inclusions 12 4 3 2 1 A4 H1 H2 H3 H4 H5 H6 H7 H8 H9

Subgroup Hi Normalizer NHi Centralizer ZHi
H0=A4 A4 H9=1
N A4 N
H2 A4 H2
H3 A4 H3
H4 A4 H4
H5 A4 H5
H6 N H1
H7 N H1
H8 N H1
H9=1 A4 A4

Let w be a primitive cube root of 1 given by w= e2πi/3

Homomorphism Kernel
ϕ0: A4 1 S 1 T 1 kerϕ0= A4
ϕ1: A4 μ3 S w T 1 kerϕ1= H1
ϕ2: A4 μ3 S w2 T 1 kerϕ2 =H1
ϕ4: A4 GL3 S 1 0 0 0 -1/2 -3/2 0 1/2 -1/2 T -1/3 -4/3 0 -2/3 1/3 0 0 0 -1 kerϕ4 = 1

References

[CM] H. S. M. Coxeter and W. O. J. Moser, Generators and relations for discrete groups, Fourth edition. Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], 14. Springer-Verlag, Berlin-New York, 1980. MR0562913 (81a:20001)

[GW1] F. Goodman and H. Wenzl, The Temperly-Lieb algebra at roots of unity, Pacific J. Math. 161 (1993), 307-334. MR1242201 (95c:16020)

page history