The affine Weyl group action on 𝔥*

Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville, VIC 3010 Australia
aram@unimelb.edu.au

Last update: 27 July 2013

The affine Weyl group action on 𝔥*

A reference for this section is [Kac1104219, §6.5].

Let R be the set of roots of the finite dimensional Lie algebra 𝔤 (see (1.10)). For αR

ν(hα)=α andν(hα) =α= 2αα,α, (1.21)

where [eα,fα]= hα, and λ(hα)= λ,α.

For αR and k let

h(-α+kδ)= -hα+k eα,fα0 K=-hα+k12 hα,hα0K

and define

s-α+kδ: 𝔥*𝔥* bys-α+kδλ =λ-λ (h(-α+kδ)) (-α+kδ).

Hence [eα,fα] =hα and

λ(hα) =λ,α

relates the evaluation pairing and the form on 𝔥*. If λ=αδ+λ+mΛ0 and sαλ=λ-λ,α then

s-α+kδλ = λ-λ (h(-α+kδ)) (-α+kδ) = λ- (aδ+λ+mΛ0) (-hα+k12hα,hα0K) (-α+kδ) = λ-a·0- λ,-α (-α+kδ)-mk12 α,α (-α+kδ) = λ-λ,αα +mkα,αα,α α+ ( λ,kα- 12m kα,kα ) δ = λ-λ,αα +mkα+ ( λ,kα- 12m kα,kα ) δ = ( a+ λ,kα- 12m kα,kα ) δ+ λ- λ,α α+mkα+mΛ0 = ( a+ λ,kα- 12m kα,kα ) δ+sα λ α+mkα+mΛ0

so that, in matrix form with respect to a basis δ,hˆ1,,hˆ,Λ0 of 𝔥, where hˆ1,,hˆ is an orthonormal basis of 𝔥,

s-α+kδ= ( 1 kα -12 kα,kα 0 000 0sα0 000 000 0kα0 000 0 0 1 )

Then

tkα= s-α+kδsα = ( 1 kα -12 kα,kα 0 000 0sα0 000 000 0kα0 000 0 0 1 ) ( 1 0 0 0 000 0sα0 000 0 0 0 1 ) = ( 1 -kα -12 kα,kα 0 000 010 000 000 0kα0 000 0 0 1 ) .

Thus the group generated by the {sα+kδ|αR,k} is

W=W0Q= {wtμ|wW0,μQ} ,whereQ= αR α.

and W0 is the group generated by the {sα|αR}.

page history