The Fano plane as a flag variety

Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville, VIC 3010 Australia
aram@unimelb.edu.au

Last update: 2 June 2013

GP1 and GP2 and the Fano Plane

The vector space of column vectors of length n

𝔽n= { ( c1c2cn ) |ci𝔽 }

has basis e1,e2,,en where ei=(00100)ith.

Let be the lattice of subspaces of 𝔽n partially ordered by inclusion, and

𝓁 = {maximal chains in} = { (0V1Vn-1𝔽n) |dimVi=i } .

Our favourite flag is

0E1 En-1𝔽n

where

Ei= { (c1c2ci00) |cj𝔽 } =span{e1,,ei}.

The automorphism group of the vector space 𝔽n is

G=Aut(𝔽n)= GLn(𝔽)

and we write g=(gij) where gei=j=1ngjiej so that

gei=(1gi1)

is the ith column of g.

The stabilizer of Ei is

Pi=StabG(Ei)= AAA AAA i AAA AA n-i AA AA { ( *** *** *** ** 0 ** * 0 * ** * ) } GLn(𝔽)

and the stabilizer of 0E1E2En-1𝔽n is

B=P1P2 Pn-1= { ( ** * * 0* ) } .

The maps

GPi {subspaces of dimensioniin𝔽n} gPigEi

and

GB𝓁 gB(0gE1gE2gEn-1𝔽n)

are bijections and

gEi=span { (1g11), (1g21), , (1gi1), }

is the span of the first i columns of g.

Representations of cosets in GPi

Let

xi(c)= i i+1 ( 1 ) 1 i 1 c i+1 0 1 1 1 si= i i+1 ( 1 ) 1 i 0 1 i+1 1 0 1 1

The Weyl group of G=GLn() is

W0=Sn= s1,,sn-1 ={n×npermutation matrices},

the subgroup of GLn() generated by s1,,sn-1.

If

Wi=W0Pi= s1,s2,, sj-1, sj+1, sj+2,, sn-1

then coset representatives of the cosets in W0Wi are

Wi= { ( 12i-1i i+1i+2n σ1σ2 σi-1σi τ1τ2 τn-i ) | σ1<σ2<< σi-1<σi τ1<τ2<< τn-i }

and

GPi= uWi BuPi

where, if u=sj1sj is a minimal length expression of u as a product of the generators s1,,sn-1 of W0, then

BuPi= { xj1(c1) sj1 xj(c) sjPi |c1,, c𝔽 } .

The cases GP1 and GP2

P1= { ( * *** * 0 * *** *** *** ) } andP2= { ( ** ** *** * 0 * *** *** *** ) } W1 = s1×sn-1= s2,,sn-1 Snand W2 = s2×sn-2= s1,s3,s4, ,sn-1 Sn. W1 = { 1 2 j n |j {1,2,,n} } = { sj-1 sj-2 s2s1| j{1,2,,n} } W2 = { 1 i j n |i,j {1,2,,n} ,i<j } = { si-1s2s1 sj-1sj-2 s3s2| i,j{1,2,,n} ,i<j } .

Then

GP1 { V1𝔽n| dimV1=1 } gP1span{(1g11)}

and

GP2 { V2𝔽n| dimV2=2 } gP2 span { (1g11), (1g21) } .

Next

GP1 = uW1 BuP1= j=1nB sj-1sj-2 s2s1P1and GP2 = uW2 BuP2= i,j{1,2,,n}i<jB si-1 s2s1 sj-1s3 s2P2

with

Bsj-1s2s1 P1= { xj-1 (cj-1) sj-1 x2(c2)s2 x1(c1)s1 P1|c1 ,,cj-1𝔽 }

and

Bsi-1s2s1 sj-1s3s2 P2= { xi-1 (ci-1) si-1 x2(c2)s2 x1(c1)s1 xj-1 (dj-1) sj-1 x2(d2)s2 P2 withc1, c2,, ci-1, d2,d3, ,dj-1𝔽 } .

Note that

xj-1 (cj-1) sj-1 x2(c2)s2 x1(c1)s1= ( c11 c201 0 1 cj-1 00 01 100 00 0 0 1 1 )

and

xi-1 (ci-1) si-1 x2(c2)s2 x1(c1)s1 xj-1 (dj-1) sj-1 x2(d2)s2= ( c1 d2 1 c2 d3 01 0 1 ci-1 di 00 01 1000 000 0 di+1 0 0 0 0 1 0 1 0 dj-1 00 000 01 0100 000 00 0 0 1 1 ) .

The case G=GL3(𝔽2)

P1= { ( *** 0** 0** ) } and P2= { ( *** *** 00* ) }

and cosets in GP1 have representatives

( 1 1 1 ) , ( c110 100 001 ) , ( c110 c201 100 ) withc1, c2𝔽2

so that Card(GP1)=1+2+4=7.

Cosets in GP2 have representatives

( 1 1 1 ) , ( 100 0d21 010 ) , ( c1d21 100 010 ) withc1, d2𝔽2

so that Card(GP2)=1+2+4=7.

Then the lattice

𝔽23 ( 10 01 00 ) ( 10 00 01 ) ( 10 01 01 ) ( 00 10 01 ) ( 10 10 01 ) ( 01 10 01 ) ( 11 10 01 ) (100) (010) (110) (001) (101) (011) (111) (000)

have representatives of GP1 on level 1 and representatives of GP2 on level 2.

Another way to encode this poset is via the following picture of the Fano plane

(001) (011) (111) (101) (010) (110) (100)

so that the inclusion of points in lines matches the poset .

Notes and References

This is a typed copy of handwritten notes by Arun Ram on 12/11/2012.

page history