The affine BMW algebra Wk

Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville, VIC 3010 Australia
aram@unimelb.edu.au

Last updates: 15 April 2011

The affine BMW algebra Wk

Let C be a commutative ring and let CBk be the group algebra of the affine braid group. Fix constants

q,zC     and     Z0() C for
with q and z invertible. Let Yi =z Xεi so that
Y1 = z Xε1 , Yi = Ti-1 Yi-1 Ti-1 ,and Yi Yj = Yj Yi , for   1i,jk . (Ydf)
In the affine braid group
Ti Yi Yi+1 = Yi Yi+1 Ti . (YTc)

Assume (q-q-1) is invertible in C and define Ei in the group algebra of the affine braid group by

Ti Yi = Yi+1 Ti - ( q-q-1 ) Yi+1 ( 1- Ei ) . (Edb)

The affine BMW algebra Wk is the quotient of the group algebra CBk of the affine braid group Bk by the relations

Ei Ti±1 = Ti±1 Ei = z1 Ei , Ei Ti-1 ±1 Ei = Ei T i+1 ±1 Ei = z±1 Ei , (BW1)
E1 Y1 E1 = Z0 () E1 , Ei Yi Yi+1 = Ei = Yi Yi+1 Ei . (BW2)

Since Yi+1 -1 ( Ti Yi ) Yi+1 = Yi+1 -1 Yi Yi+1 Ti = Yi Ti , conjugating (Edb) by Yi+1 -1 gives

Yi Ti = Ti Yi+1 - ( q- q-1 ) ( 1-Ei ) Yi+1 .
Left multiplying (Edb) by Yi+1 -1 and using the second identity in (Ydf) shows that (Edb) is equivalent to Ti - Ti -1 = ( q- q-1 ) ( 1-Ei ) , so that
Ei = 1- Ti - Ti -1 q- q -1 and Ti Ti+1 Ei Ti+1 -1 Ti -1 = Ei+1 . (BW4)
Multiply the second relation in (BW4) on the left and the right by Ei , and then use the relations in (BW1) to get Ei Ei+1 Ei = Ei Ti Ti+1 Ei Ti+1 -1 Ti -1 Ei = Ei Ti+1 Ei Ti+1 -1 Ei = zEi Ti+1 -1 Ei = Ei , so that
Ei Ei±1 Ei = Ei .Note that Ei2 = ( 1+ z- z-1 q- q-1 ) Ei (BW5)
is obtained by multiplying the first equation in (BW4) by Ei and using (BW2). Thus, from the first relation in (BW2),
Z0 (0) = 1+ z-z-1 q-q-1 and ( Ti- z-1 ) ( Ti + q-1 ) ( Ti -q ) =0 , (BWF)
since ( Ti - z-1 ) ( Ti + q-1 ) ( Ti-q ) Ti-1 = ( Ti - z-1 ) ( Ti2 - ( q- q-1 ) Ti-1 ) Ti-1 = ( Ti - z-1 ) ( Ti - Ti-1 - ( q- q-1 ) ) = ( Ti -z-1 ) ( q- q-1 ) ( - Ei ) = - ( z-1 - z-1 ) ( q- q-1 ) =0 . The relations
Ei+1 Ei = Ei+1 Ti Ti+1 , Ei Ei+1 = Ti+1 -1 Ti-1 Ei+1 , (BW6)
Ti Ei+1 Ei = Ti+1 -1 Ei ,and Ei+1 Ei Ti+1 = Ei+1 Ti-1 , (BW7)
follow from the computations Ei+1 Ti Ti+1 = z ( Ei+1 Ti-1 Ei+1 ) Ti Ti+1 = z ( z-1 Ei+1 Ti+1 -1 ) Ti-1 Ei+1 Ti Ti+1 = Ei+1 Ei , Ti+1 -1 Ti -1 Ei+1 = Ti+1 -1 Ti -1 ( z-1 Ei+1 Ti Ei+1 ) = Ti+1 -1 Ti-1 z-1 Ei+1 Ti z Ti+1 Ei+1 = Ei Ei+1 , Ti Ei+1 Ei = Ti Ei+1 ( Ti -1 Ei z-1 ) = z-1 Ti+1 -1 Ei Ti+1 Ei z-1 = Ti+1 -1 z Ei z-1 = Ti+1 -1 Ei ,  and Ei+1 Ei Ti+1 = Ei+1 Ti+1 -1 zEi Ti+1 = z Ei+1 Ti Ei+1 Ti -1 = z z-1 Ei+1 Ti-1 = Ei+1 Ti-1 .

A consequence (see (???)) of the defining relations of Wk is the equation

( Z0- - z q-q-1 - u2 u2-1 ) ( Z0+ + z-1 q-q-1 - u2 u2-1 ) E1 = - (u2-q2) (u2- q-2) (u2-1) (q-q-1) 2 E1 ,
where Z0+ and Z0- are the generating functions Z0+ = 0 Z0() u- and Z0+ = 0 Z0() u- . This means that, unless the parameters Z0() are chosen carefully, it is likely that E1=0 in Wk.

From the point of view of the Schur-Weyl duality for the degenerate affine BMW algebra (see [OR]) the natural choice of base ring is the center of the quantum group corresponding to the orthogonal or symplectic Lie algebra, which, by the (quantum version) of the Harish-Chandra isomorphism, is isomorphic to the subring of symmetric Laurent polynomials given by C= { z [ L1±1 ,, Lr±1 ] Sr | z( L1,,Lr ) = z( L1-1, L2,,Lr ) }, where the symmetric group Sr acts by permuting the variables L1,,Lr . Here the constants Z0() C are given, explicitly, by setting the generating functions Z0+ and Z0- equal, up to a normalization, to

i=1r (u-qLi) (u- q-1Li) (u-q Li-1) (u- q-1 Li-1)     and    i=1r (u- q-1 Li) (u- q Li) (u- q-1 Li-1) (u- q Li-1) ,
This choice of C and the Z0() are the universal admissible parameters for Wk.

Quotients of Wk

The affine Hecke algebra Hk is the affine BMW algebra Wk with the additional relations

Ei =0, for   i=1,,k-1 . (Ah)
Fix b1 ,, br . The cyclotomic BMW algebra Wr,k ( b1 br ) is the affine BMW algebra Wk with the additional relation
(Y1 -b1 ) ( Y1-br ) =0. (Cyc)
The cyclotomic Hecke algebra Hr,k (b1 br ) is the affine Hecke algebra Hk with additional relation (Cyc).

A consequence of the relation (Cyc) in Wr,k (b1 br ) is

( Z0+ + z-1 q-q-1 - u2 u2-1 ) E1 = ( z q-q-1 - uz u2-1 ) ( j=1r u-bj-1 u-bj ) E1 . (2.52)
This equation makes the data of the values bi almost equivalent to the data of the Z0() .

Notes and References

This section is based on forthcoming joint work with Z. Daugherty and R. Virk [DRV].

Bibliography

[AMR] S. Ariki, A. Mathas and H. Rui, Cyclotomic Nazarov Wenzl algebras, Nagoya Math. J. 182, (2006), 47-134. MR2235339 (2007d:20005)

[DRV] Z. Daugherty, A. Ram, and R. Virk, Affine and graded BMW algebras, in preparation.

[Naz] M. Nazarov, Young's orthogonal form for Brauer's centralizer algebra, J. Algebra 182 (1996), no. 3, 664--693. MR1398116 (97m:20057)

[OR] R. Orellana and A. Ram, Affine braids, Markov traces and the category 𝒪, Algebraic groups and homogeneous spaces, 423-473, Tata Inst. Fund. Res. Stud. Math., Tata Inst. Fund. Res., Mumbai, 2007. MR2348913 (2008m:17034)

page history