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1 Loop groups

1.1 The Iwahori subgroup

A common setup is where F is the field of fractions of o, the discrete valuation ring o is the
ring of integers in F, p is the unique maximal ideal in 0 and k& = o/p is the residue field. The

favourite examples are

F = C((t)) 0 = C[[1] k=C,
F=Q, 0 =17, k=F,,
F =F,((1)) 0 = F,[[f] k=T,

where Q,, is the field of p-adic numbers, Z,, is the ring of p-adic integers, and [F is the finite field
with ¢ elements.
The diagram

G = G(F)
I ul Ul
ul gives K = G(o) 2, G(k)
o — k=o/p ul ul ul
I = o \(B(k) — B,

where
B(k) is the group generated by x,(c) and hyv(d)

fora € R™, \Y € PV, c€k,d e k*. Then I is the Twahori subgroup of G,
G(k)/B(k) is the flag variety,
G/I is the affine flag variety, and G/K is the loop Grassmanian.
If ¢ is the generator of the maximal ideal p,
N = (na, hyv(d), hyv(t) | « € R\ € PY.c e kX),
H = (hyv(d) | \Y € PY,d € k™), and
W=WxP={tyww|A P, weW},



then H is a normal subgroup of N and the map

W — N/H
Sq — noH is an isomorphism.
tayv —  hyv (t_l)H

Since H C I the coset notation wl makes sense for w € w.
The following theorem is a consequence of 777 and 777.

Theorem 1.1. With notations as in (?2?), (797) and (9%7)

Bruhat

decomposition G(k) = |—| BwB K= I_I Twl
weW weW
Twahori _
decomposition G = |—|~ Twl G = u Ul
weW veW
Cartan _ Twasawa
decomposition G = I—l Kix K G = |—| Ut K decomposition

)‘VEPJ\r/ NVEPV
1.2 G/I points in Jwl
Let R = R+ 76§ and define
anrjé(C) = ma(Ctj) and h(a+j§)\/ (d) = hav (d)7

for a +j6 € R, ¢ € k and d € k*. The action of W on R is determined by

WEajs(C)W™ = Ty (a+js)(C) mod H.
The analog of R for G is

R = {a+j0 | 2asjs(c) €T for c € k}
={a+jd|ae€ R, j€Zs} U {~a+3j0|a€R",jecZo}

and the length of w € W is

l(w) = Card(R(w)) where R(w) = {a + 70 € R | w(a+ j6) ¢ R'}.

The simple reflections sg, . . ., s, are the elements of length 1 in W and the simple roots ay, . . .

are determined by
R(s;) = {ay} and we define Q={yc W | ¢(~) = 0}.

If () = 0 then
Il =~I,I =~I.

Since
IS]'I = SjISjI = Sj./ffajl = xaijI,
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{z;(c)s;I | c € k} C Is;I. If w;(c)s;I = wj(c)sjl then sjaj(c’ —c)s; € I and x_q,(c' —c) € I so
that ¢ —c¢ =0 and ¢/ = ¢. Thus

{7a;(c)s;j | c € k} is a set of coset representatives of the I-cosets in Is;[.

The elements of length 0 and 1 generate W. If w= VSiy -+ 84, is a reduced word for w then
vy, (€1)si, -+ xi,(c)si, ] = xp, (c1) -+ - xp,(c))wl € Twl,
since 31 = oy, B2 = 8§, Wiy, -+, B¢ = Siy - -+ 8, , v, are all in RI.

Proposition 1.2.

(a) Let w € W. Then
Tws;1, if wsj > w,

Iwl - Is;I = )
Twl Ulws;I, if ws; <w.

(b) G= | | TwI.

wew
(c¢) Let {yj(c) | ¢ € k} be coset representatives of the I-cosets in Is;I. Let w € W and let
w = 8;, - 8;, be a reduced word for w. Then

{vi, - vi,(co) | 1, co € kY,
1 a set of coset representatives of the I-cosets in Twl.
Proof. First note that
Isil - Isil =111 =1X o, I =X o 1=1UlIsI.
If ws; > w then wa; € RT and
Iwl - Isj] = ITws;I%] = stjX,ajI = IXwajwst = Tws;lI,
and if ws; < w then
Iwl - Isjl = Tws;I - Is;1---1s;1 = Tws;l - (I UIsjl) = Tws;I UIwl.

(b) Assume Jwl = Ivl. If {(w) = 0 then v € Iwl = wl and w'v € I giving that w'v =1,
since NN = H. If £(w) > 0 let s; be a simple reflection such that ws; < w. Then

Tws;I C Twl - Is;I = Ivl - Is;I so that Tws;I = Ivs;I or Tws;I = Ivl,

since vl - Is;I C Ivs;jI UlIvl. If Iws;I = Ivl then, by induction, ws; = v and Tws;I = Ivl =
Iwl so that ws; = w. Since this is impossible, it must be that Tws;I = Ivs;I so that, by
induction, ws; = vsj. Hence w = v. (c) Since G is generated by I and the z,(c)sq € Isql.

G= || Iwr
weWw
(d) By induction on ¢, the product Iwl - Is;I contains the points in the sets
Yir(c1) -y (c) - IsjI = yi (c1) -+ yi, (co) I sl = {yi (c1) -+ yi, (co)y; ()] | ¢ € K}
If i, (e1) -+ yi, (co)b = i, (c}) - - i, ()Y then
Yir (1) i (e1)yin (e2) -+ i, (co)b = yip (¢) - - i, (V.

If yi, (¢)) " Yyi, (c1) € Isiy I - Isj, I = Is;, I UT and, since the right hand side is in I's; wl we must
have y;, (¢}) "y, (c1) € I so that y;, (c1) € yi, (¢})I, which forces ¢; = c}. O



Proposition 1.3. Let ¢ = Card(k). Then the characteristic functions {Ty, | w € W} of the
double cosets Iwl are a basis of the Hecke algebra H = C.(I\G/I) and

Tws, if wsj > w,

T, T, =T, and T,Ts, =
widy wy wi s; {qusj + (¢ —1)Ty, ifws; <w.
Proof. The product Iwl - Is;I contains the points

zi, (e)ng, - x4, (co)ni, L - Isi] = xy (cr)ng, - -~ x4, (co)ni, Isj1

= {x, (c1)ng, - x4, (co)ni,zi(e)nil | ¢ € k}.
If ws; > w then
Tws;I = ITwl - Is;I = {x;,(c1)ni, - - @i, (co)ng,xj(c)nsl | ci,...,coc € k}.
If ws; < w and ¢ # 0 then

wiy (c1)siy -+ iy (Co—1)8i,_ Tiy (c)si,T5(C) 851

|
&8

If ¢ =0 then
iy (c1)siy - Tiy_y (co—1)8i,_ 21(c0)8525(0)851 = w4y (1) sy - iy (Co—1)8i,_, L. (1.1)
Hence, in the product
iy (c1)siy - Tip_y (co-1)8i,_ x5 (ce)s; T - Is;]
=iy (c1)8i - Tip_y (co—1)8i,_, Tj(ce)sjIs;1
= {4, (c1)siy -+ @iy, (co-1)8i,_,Tj(co)sjzj(c)sil | ¢ € k},
the coset
Ly (Cl)Sh T T (Cf—l)si£—1xoéj (aﬁ)st

appears once for each choice of ¢, € k and ¢ € kX such that ¢, + ¢! = ay, a total of ¢ — 1 times.
The coset

xil (cl)sil Tt x’ig_l (cé—l)sig_lja

appears once for each choice of ¢, € F, a total of ¢ times. ]

1.3 G/I points in U vl N 1wl

The group 3
U =@ of)| fEF) and RY=R 47

so that X,1rs € U™ exactly when o + kd € RY. The periodic orientation is an orientation of
the hyperplanes H, s such that

(a) 1 is on the postive side of H, for o € RT,



(b) Hu4ks and H, have parallel orientiations.

Then
a+ké e RY ifand only if the orientation of Hyy ks is PICTURE.

We shall use the identity
talF)ngt = 2 alf o al=f)hov(f)  (main folding law)
to rewrite points of Jwl as elements of U~ vI. Suppose that
Liy (Cl)n;ll A7) (Cﬂ)n;{l =Ty (Cll) Ty (C@nvb
Then
ziy (c)ng,' - wi(cong, = a4, (ch) -y, (cp)moba;(c)n !
=2y, (c]) - -xw(cz)nvxj(é)nglbl, since bmj(c)n;1 € Is;I.

If va; € RV then this is equal to

Ty, (€)) - 2y, (E)) T, (E)110s, 0" € U~ 0I N Tws;.

J
If va; ¢ RV and & #£0, ¥ :_Ic_ﬂ}' Then
Lpy (Cll) R ICY (Clﬁ)nvl‘aj (E)ij/ =Tp (Cll) Y (02) —ay (6_1)1:043‘ (_6)hav (5)5/
=zp,(c1) - xﬂe(cé)nﬂ— @ hy”
= g, (c))--- xgé(cé)xgul( )nvb” e U vl N Iws;l,
where Bp41 = —va;. So
7 J
_ -+
vSj to becomes v
c Cfl
i J
Ifva; ¢ RV and ¢ =0, % 0+U' Then

L6y (Cll) I, (CZ)”v%j (O)njb/ = Ip (Cll) I, (CZ)nUl‘*Oéj (O)njb/
=g (0/1) -z, (c@)x/gul(O)nvsjb/ € U vsjI NITws;l,

where 3p41 = —va;. So
J J

— ]+ — ]+

s <_0_U becomes S .<_0_v

Case 2: ws; < w. This should follow from the computation in 5.1.
A labeled step of type j is

j j J
- | + - |+ -
4|_, with ¢ € k, or or

c 0

Ifwe W and @ = i, -+ 8i, be a minimal length walk to w define, for each v € W,

. [labeled folded paths p of type
P(w)y = { which end in v

J’_
== with c € k*,
(&




Theorem 1.4. If (c1,...,¢;) € B(W), then, for somecy,..., ¢, €k,
sy (Cl)xﬁ2 (02) B, (C€>’LUI = Tiy (Cl>3i1 T Ty (Cf)siej = Ty (Cll) T Ly, (CQ)UI
J
where B = zay, if the kth step of p is 2_|_,Z5j,
and
( J
zaj, if the kth step of ®(p) is 2__|_izsj,

Yk =

J J
- -1+
—zoy, if the kth step of ®(p) is =% | T2 oor | -

(b) The bijection in (?79?) restricts to a bijection

P(@)y «— U vINIwl  and G= | | U ol
veW

Proposition 1.5. Let ¢ = Card(k). Then the characteristic functions {X, | v € W} of the
double cosets U~ vl are a basis of the right H-module C.(U\G/I),

Xy, if

XoTy = Xy, and XoTs; =
qX'USj + (g —1)Xy, if

1.4 The closure order
1.5 The loop Grassmanian G/K
Let vV € PY. The vV-hezagon is the set of alcoves in
t, W = PICTURE
The ending hexagon eh(p) and the final direction ¢(p) of p € P(w) are given by
ea(p) = tenyvp(p), eh(p) € PY,p(p) € W.

Let A\Y € (PY)* and let XY be a minimal length walk to the AV-hexagon. Let W*" be a set
of minimal coset representatives of W/Wyv, where Wyv is the stabilizer of A in W. Let

PO = | P@X) and POV = {p e POY) | ehip) = 4V},
weWrY

As points of G/K, the Oth label on these paths is a coset representative of an I-coset in K.
Let B(AY),v be the set of (unlabeled) walks that are obtained by removing the labels from

the elements of P(XV) uv- Let

€+ (b) = number of positive crossings in b,
f(b) = number of folds in b.



It is natural to define
dim(b) = ey (b) + f(b).

since the points of G/K corresponding to b form a “cell” isomorphic to k¢+®) x (k<)) 1f
Card(k) = ¢ then each b € B(AY),v corresponds to

Card,(b) = ¢+® (g — 1)/®  elements of P(Xv)uv.

The MV-cycles of type A and weight u are the elements of the set

MV (X),, = {irreducible components of U~t, K N Kt\K}.

Theorem 1.6.
BOXY)w — MV(AY),v

(a) (Gaussent-Littelmann) The map
—  Z(p)

s a bijection.

1rkovic- Vilonen , 4.0 wrreducible components of Ut N Kty ave dimension
(b) (Mirk Vil MV, /) All ducibl fU t, KNKt\K h d
(A=, p)-

(¢) (Anderson [An, Prop. 3, p. 579) MV (\), is the set of irreducible components of U=t, K NUTt\K
which are contained in Kt)\K.

Proof. By Macdonald’s spherical function formula

sx="P| 1y = > Card(B(X),)X*.
nepPY

Thus the paths of maximal dimension in B(~\")_,v have dimension (A" — 1, p). O
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