The affine Hecke algebra

The affine Hecke algebra

Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville, VIC 3010 Australia
aram@unimelb.edu.au
and

Department of Mathematics
University of Wisconsin, Madison
Madison, WI 53706 USA
ram@math.wisc.edu

Last updates: 20 May 2010

The affine Hecke algebra

Let q * . The affine Hecke algebra H~ n is the algebra given by generators X ε1 , T2 , T3 ,, Tn and relations Ti Tj = Tj Ti if   i-j >1, Ti T i+1 Ti = T i+1 Ti T i+1 if  2in-1, X ε1 Tj = Tj X ε1 , j>1 X ε1 T2 X ε1 T2 = T2 X ε1 T2 X ε1 , Ti2 = q- q -1 Ti +1, 2<i<n. If q=1 then H~ n = S~ n , the group algebra of the affine symmetric group.

Define X εk = Ti T i-1 T2 X ε1 T2 T i-1 Ti ,for  1in, and Xλ = X1ε λ1 Xnε λn , for  λ= λ1 ε1 + λn εn , λi . Then Xλ Xμ = X λ+μ , for all  λ,μ. Then X =-span Xλ | λ= λ1 ε1 + λn εn , λi is a commutative subalgebra of H~ n isomorphic to the group algebra of n .

The affine Hecke algebra is the unique algebra structure on X H such that X = X 1 and H=1H are subalgebras and Xλ Ti = Ti X si λ + q- q -1 Xλ - X si λ 1- X εi - ε i-1 , for all λ n and 1in.

Define T0 = X ε1 - ε n Tn T n-1 T3 T2 T3 Tn andω= X - ε1 T2 T3 Tn .

The affine Hecke algebra H~ n is presented by generators T0 , T1 ,, Tn ,ω and relations Ti Tj = Tj Ti if   i-j >1, Ti T i+1 Ti = T i+1 Ti T i+1 , ω Ti ω -1 = T i+1 , Ti2 = q- q -1 Ti +1, 0in-1, where the indices are always taken modulo n.

If w Sn let Tw = T i1 T ip if w= s i1 s ip and p is minimal. The affine Hecke algebra H~ n has basis Xλ Tw ,where  w Sn ,λ= λ1 ε1 ++ λn εn , λj.

The evaluation homomorphism is the surjective homomorphism defined by H~ n H r,1,n Ti Ti , X εk Tk T2 X ε1 T2 Tk . Via this homomorphism every irreducible H r,1,n module M is an irreducible H~ n -module. Conversely, let M be an H~ n -module. Let u0 ,, u r-1 be such that the minimal polynomial p t of the linear transformation of M determined by the action of X ε1 dived the polynomial t- u0 t- u1 t- u r-1 . The H~ n action on M is an H r,1,n u0 u r-1 ; q action on M.

So any H r,1,n u0 u r-1 ; q -module M is an H~ n and conversely, any H~ n module M is an H r,1,n u0 u r-1 ; q module for some appropriate choice of r and u0 ,, u r-1 . So H~ n 's representation theory "contains the representation theory" of all the algebras H r,1,n u0 u r-1 ; q .

References [PLACEHOLDER]

[BG] A. Braverman and D. Gaitsgory, Crystals via the affine Grassmanian, Duke Math. J. 107 no. 3, (2001), 561-575; arXiv:math/9909077v2, MR1828302 (2002e:20083)

page history