Derivative examples

Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville, VIC 3010 Australia
aram@unimelb.edu.au

Last update: 09 July 2012

Examples

Example: Explain why dlnx dx = 1x.

Since elnx=x ,  delnx dx = dx dx .
So elnx dlnx dx = 1. So x dlnx dx = 1. So dlnx dx = 1x.

Example: Find dsin-1x dx .

Since sin( sin-1x ) = x,  dsin( sin-1x ) dx = dx dx .
So cos( sin-1x ) dsin-1x dx = 1. So dsin-1x dx = 1 cos( sin-1x ) .
So we would like to "simplify" cos(sin-1x).
Since 1-cos2( sin-1x ) = sin2( sin-1x ),   1-( cos( sin-1x ))2 = ( sin(sin-1x) )2.
So 1-( cos(sin-1x) )2 = x2. So 1-x2 = ( cos(sin-1x) )2.
So cos(sin-1x) = 1-x2. So dsin-1x dx = 1 cos(sin-1x) = 1 1-x2 .

Example: Find dcos-1x dx .

Since cos(cos-1x) = x,   dcos( cos-1x ) dx = dx dx .
So -sin(cos-1x) dcos-1x dx = 1. So dcos-1x dx = -1 sin(cos-1x) .
So we would like to "simplify" sin(cos-1x).
Since 1-sin2( cos-1x ) = cos2(cos-1x),   1-( sin(cos-1x) )2 = ( cos(cos-1x) )2.
So 1-( sin(cos-1x) )2 = x2. So 1-x2 = ( sin(cos-1x) )2.
So sin(cos-1x) = 1-x2. So dcos-1x dx = -1 sin(cos-1x) = -1 1-x2 .

Example: Find dtan-1x dx .

Since tan(tan-1x) = x,   dtan( tan-1x ) dx = dx dx .
So sec2(tan-1x) dtan-1x dx = 1. So dtan-1x dx = 1 sec2(tan-1x) .
So we would like to "simplify" sec2(tan-1x).
Since sin2x + cos2x = 1, sin2x cos2x + cos2x cos2x = 1 cos2x . So tan2x+1 = sec2x.
So sec2(tan-1x) = tan2(tan-1x)+1 = ( tan(tan-1x) )2+1 = x2+1.
So dtan-1x dx = 1 x2+1 .

Example: Find dcot-1x dx .

Since cot(cot-1x) = x,   dcot(cot-1x) dx = dx dx .
So -csc2(cot-1x) dcot-1x dx = 1. So dcot-1x dx = -1 csc2(cot-1x) .
So we would like to "simplify" csc2(cot-1x).
Since sin2x+cos2x = 1, sin2x sin2x + cos2x sin2x = 1 sin2x . So 1+cot2x = csc2x.
So csc2(cot-1x) = 1+cot2(cot-1x) = 1+( cot(cot-1x) )2 = 1+x2.
So dcot-1x dx = -1 1+x2 .

Example: Find dsec-1x dx .

Since sec(sec-1x) = x,   dsec(sec-1x) dx = dx dx .
So tan(sec-1x) sec(sec-1x) dsec-1x dx = 1. So tan(sec-1x) x dsec-1x dx = 1.
So dsec-1x dx = 1 xtan(sec-1x) .
So we wouldlike to "simplify" tan(sec-1x).
Since sin2x+cos2x = 1, sin2x cos2x + cos2x cos2x = 1 cos2x . So tan2x+1 = sec2x.
tan2(sec-1x)+1 = sec2(sec-1x). So ( tan(sec-1x) )2+1 = ( sec(sec-1x) )2.
So ( tan(sec-1x) )2+1 = x2. So tan(sec-1x) = x2-1.
So dsec-1x dx = 1 xx2-1 .

Example: Find dcsc-1x dx .

Since csc(csc-1x) = x,   dcsc(csc-1x) dx = dx dx .
So -csc(csc-1x) cot(csc-1x) dcsc-1x dx = 1. So -xcot(csc-1x) dcsc-1x dx = 1.
So dcsc-1x dx = -1 xcot(csc-1x) .
So we would like to "simplify" cot(csc-1x).
Since sin2x+cos2x = 1, sin2x sin2x + cos2x sin2x = 1 sin2x .
So 1+cot2x = csc2x.
So 1 + cot2(csc-1x). So 1 + ( cot(csc-1x) )2 = ( csc(csc-1x) )2.
So 1+( cot(csc-1x) )2 = x2. So cot(csc-1x) = x2-1.
So dcsc-1x dx = -1 xx2-1 .

Example: Find dy dx when y = logx10.

xy = xlogx10 = 10. Take the derivative: dxy dx = d(elnx)y dx = deylnx dx = eylnx ( y1x + dy dx lnx ) = d10 dx =0. So eylnx ( y1x + dy dx lnx ) = 0.
Solve for dy dx . eylnx dy dx lnx = -eylnxy x . So dy dx = -eylnxy xeylnxlnx = -y xlnx = logx10 xlnx .

Example: Find the third derivative of 2x with respect to x.

y = 2x. dy dx = d2x dx = d(eln2)x dx = dexln2 dx = exln2 (ln2) = (eln2)x ln2 = 2xln2. y = d2y dx2 = d dx ( dy dx ) = d2xln2 dx = ln22xln2 = (ln2)2 2x. d3y dx3 = d dx ( d2y dx2 ) = d dx ( (ln2)2 2x ) = (ln2)2 2xln2 = (ln2)3 2x.

Example: If y = acos(lnx) + bsin(lnx) show that x2 d2y dx2 + x dy dx + y = 0.

dy dx = a(-sin(lnx)) 1x + bcos(lnx) 1x = -asin(lnx)x-1 + bcos(lnx) x-1, d2y dx2 = -acos(lnx)1x x-1 + (-a) sin(lnx) (-1)x-2 + (-b) sin(lnx) 1xx-1 + bcos(lnx) (-1)x-2 = -acos(lnx) + asin(lnx) - bsin(lnx) - bcos(lnx) x2 = 1x2 ( (a-b) sin(lnx) - (a+b) cos(lnx) ). So LHS = x2 d2y dx2 + x dy dx + y = x21x2 ( (a-b) sin(lnx) - (a+b) cos(lnx) ) + x( -asin(lnx)x-1 + bcos(lnx) x-1 ) + acos(lnx) + bsin(lnx) = (a-b) sin(lnx) - (a+b) cos(lnx) - asin(lnx) + bcos(lnx) + bsin(lnx) + acos(lnx) = 0.

Example: Find dy dx when asin(xy) + bcos(xy) = 0.

Take the derivative: 0 = acos(xy) ( x dy dx + 1y ) + (-b)sin( xy ) ( x(-1)y-2 dy dx + 1y-1 ) = acos(xy)x dy dx + acos(xy)y + bsin( xy ) xy2 dy dx - bsin( xy ) y-1. Solve for dy dx . acos(xy)x dy dx + bsin( xy ) xy2 dy dx = acos(xy)y - bsin( xy )y-1. So dy dx = acos(xy)y - bsin( xy )y-1 acos(xy)x + bsin( xy ) xy2 = acos(xy) y3 - bsin( xy )y acos(xy) xy2 + bsin( xy )x .

Example: Find dy dx when y = tan-1( ax ) cot-1( xa ).

dy dx = tan-1( ax ) ( -1 1+( xa )2 ) 1a + 1 1+( xa )2 (-1) ax-2 cot-1( xa ) = -tan-1( ax ) a+x2a + -cot-1( xa )a x2+a2 = -tan-1( ax )a a2+x2 + -cot-1( xa )a x2+a2 = ( -a a2+x2 ) ( tan-1( ax ) + cot-1( xa ) ). If ax = tanz then xa = cotz and z = tan-1( ax ) = cot-1( xa ). So dy dx = ( -a a2+x2 ) ( tan-1( ax ) + tan-1( ax ) ) = -2atan-1( ax ) a2+x2 .

Example: Find dex dx .

dex dx = d dx ( 1+x + x2 2! + x3 3! + x4 4! + x5 5! + x6 6! + x7 7! + ) = 0+1+ 1 2! 2x + 1 3! 3x2 + 1 4! 4x3 + 1 5! 5x4 + 1 6! 6x5 + 1 7! 7x6 + = 1+122x + 1 32! 3x2 + 1 43! 4x3 + 1 54! 5x4 + 1 65! 6x5 + 1 76! 7x6 + = 1+x + x2 2! + x3 3! + x4 4! + x5 5! + x6 6! + x7 7! + = ex.

Example: Find dsinx dx .

dsinx dx = d dx ( x - x3 3! + x5 5! - x7 7! + x9 9! - x11 11! + x13 13! - ) = 1 - 1 3! 3x2 + 1 5! 5x4 - 1 7! 7x6 + 1 9! 9x8 - 1 11! 11x10 + 1 13! 13x12 - = 1 - x2 2! + x4 4! - x6 6! + x8 8! - x10 10! + x12 12! - = cosx.

Example: Find dcosx dx .

dcosx dx = d dx ( 1 - x2 2! + x4 4! - x6 6! + x8 8! - x10 10! + x12 12! - ) = 0 - 1 2! 2x + 1 4! 4x3 - 1 6! 6x5 + 1 8! 8x7 - 1 10! 10x9 + 1 12! 12x11 - = - x + x3 3! - x5 5! + x7 7! - x9 9! + x11 11! - = -( x - x3 3! + x5 5! - x7 7! + x9 9! - x11 11! + ) = -sinx.

Example: Find dtanx dx .

dtanx dx = d dx ( sinx cosx ) = d dx ( sinx(cosx)-1 ) = sinx d(cosx)-1 dx + dsinx dx (cosx)-1 = sinx(-1) (cosx)-2 dcosx dx + cosx 1 cosx = - sinx cos2x (-sinx) + 1 = sin2x cos2x +1 = sin2x+cos2x cos2x = 1 cos2x = sec2x.

Example: Find dsecx dx .

dsecx dx = d dx ( 1cosx ) = d dx ((cosx)-1) = (-1) (cosx)-2 dcosx dx = - 1 cos2x (-sinx) = sinx cos2x = sinx cosx 1 cosx = tanxsecx.

Example: Find dcscx dx .

dcscx dx = d dx (1sinx) = d dx ((sinx)-1) = (-1) (sinx)-2 dsinx dx = - 1 sin2x (cosx) = - cosx sin2x = - cosx sinx 1 sinx = -cotxcscx.

Example: Find dcotx dx .

dcotx dx = d dx ( cosx sinx ) = d dx ( cosx(sinx)-1 ) = cosx d(sinx)-1 dx + dcosx dx (sinx)-1 = cosx(-1) (sinx)-2 dsinx dx + (-sinx) 1 sinx = - cosx sin2x cosx - 1 = -cos2x sin2x - 1 = -cos2x-sin2x sin2x = -1 sin2x = csc2x.

Example: Find dsinhx dx .

dsinhx dx = d dx ( x + x3 3! + x5 5! + x7 7! + x9 9! + x11 11! + x13 13! + ) = 1 + 1 3! 3x2 + 1 5! 5x4 + 1 7! 7x6 + 1 9! 9x8 + 1 11! 11x10 + 1 13! 13x12 + = 1 + x2 2! + x4 4! + x6 6! + x8 8! + x10 10! + x12 12! + = coshx.

Example: Find dcoshx dx .

dcoshx dx = d dx ( 1 + x2 2! + x4 4! + x6 6! + x8 8! + x10 10! + x12 12! + ) = 0 + 1 2! 2x + 1 4! 4x3 + 1 6! 6x5 + 1 8! 8x7 + 1 10! 10x9 + 1 12! 12x11 + = x + x3 3! + x5 5! + x7 7! + x9 9! + x11 11! + = sinhx.

Example: Find dtanhx dx .

dtanhx dx = d dx ( sinhx coshx ) = d dx ( sinhx(coshx)-1 ) = sinhx d(coshx)-1 dx + dsinhx dx (coshx)-1 = sinhx(-1) (coshx)-2 dcoshx dx + coshx 1 coshx = - sinhx cosh2x sinhx+1 = - sinh2x cosh2x +1 = -sinh2x+cosh2x cosh2x = 1 cosh2x = sech2x.

Example: Find dsechx dx .

dsechx dx = d dx ( 1coshx ) = d dx ((coshx)-1) = (-1) (coshx)-2 dcoshx dx = - 1 cosh2x sinhx = - sinhx cosh2x = - sinhx coshx 1 coshx = -tanhxsechx.

Example: Find dcschx dx .

dcschx dx = d dx (1sinhx) = d dx ((sinhx)-1) = (-1) (sinhx)-2 dsinhx dx = - 1 sinh2x (coshx) = - coshx sinh2x = - coshx sinhx 1 sinhx = -cothxcschx.

Example: Find dcothx dx .

dcothx dx = d dx ( 1 tanhx ) = d(tanhx)-1 dx = (-1) (tanhx)-2 dtanhx dx = - 1 tanh2x dtanhx dx = - 1 tanh2x sech2x = - 1 sinh2x cosh2x 1 cosh2x = - 1 sinh2x = -csch2x.

References

References?

page history