The 0 Hecke algebra (examples)

The 0 Hecke algebra (examples)

Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville, VIC 3010 Australia
aram@unimelb.edu.au
and

Department of Mathematics
University of Wisconsin, Madison
Madison, WI 53706 USA
ram@math.wisc.edu

Last updates: 10 June 2010

The 0 Hecke algebra (examples)

For A2 , with rows indexed by the partitions 3 , 21 , 13 and columns indexed by the subsets , 1 , 2 , 12 , D= 1 0 0 0 0 1 1 0 0 0 0 1 and Dt D= 1 0 0 0 1 0 0 1 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 = 1 0 0 0 0 1 1 0 0 1 1 0 0 0 0 1 For B2 , with rows indexed by pairs of partitions, 2 , 12 , 1 1 , 2 , 12 and columns indexed by the subsets , 1 , 2 , 12 , D= = 1 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 1 picture of bruhat graph

and Dt D= 1 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 1 = 1 0 0 0 0 2 1 0 0 1 2 0 0 0 0 1 For I2 5 , with rows and columns indexed by χ1+ , χ21 , χ2 2 , χ1- , and columns indexed by the subsets , 1 , 2 , 12 , D= 1 0 0 0 0 1 1 0 0 1 1 0 0 0 0 1 picture of bruhat graph
and Dt D= 1 0 0 0 0 1 1 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 1 1 0 0 0 0 1 = 1 0 0 0 0 2 2 0 0 2 2 0 0 0 0 1 For G2 , with rows indexed by pairs of partitions, χ1 ++ , χ1 +- , χ21 , χ22 , χ1 -+ , χ1 -- , and columns indexed by the subsets , 1 , 2 , 12 , D= 1 0 0 0 0 1 0 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 0 1 picture of bruhat graph
and Dt D= 1 0 0 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 0 1 = 1 0 0 0 0 3 2 0 0 2 3 0 0 0 0 1 So, in general, C= 1 0 0 0 0 m 2 m-1 2 0 0 m-1 2 m 2 0 0 0 0 1 for I2 m . If m is odd then C= 1 0 0 0 0 m 2 m-1 2 0 0 m-1 2 m-1 2 0 0 0 0 1 and D= 1 0 0 0 0 1 1 0 0 1 1 0 0 0 0 1 with rows indexed by χ1+ , χ21 , χ22 ,, χ2 m-1 2 , χ1- , and columns indexed by the subsets , 1 , 2 , 12 . If m is even then C= 1 0 0 0 0 m 2 m-1 2 0 0 m-1 2 m 2 0 0 0 0 1 and D= 1 0 0 0 0 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 0 1 with rows indexed by χ1 ++ , χ1 +- , χ21 , χ22 ,, χ2 m-3 2 , χ1 -+ , χ1 -- , and columns indexed by the subsets , 1 , 2 , 12 .

References [PLACEHOLDER]

[BG] A. Braverman and D. Gaitsgory, Crystals via the affine Grassmanian, Duke Math. J. 107 no. 3, (2001), 561-575; arXiv:math/9909077v2, MR1828302 (2002e:20083)

page history