The 0 Hecke algebra (examples)
Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville, VIC 3010 Australia
aram@unimelb.edu.au
and
Department of Mathematics
University of Wisconsin, Madison
Madison, WI 53706 USA
ram@math.wisc.edu
Last updates: 10 June 2010
The 0 Hecke algebra (examples)
For A2, with rows indexed by the partitions 3,21,13 and columns indexed by the subsets ∅,1,2,12, D=100001100001 and DtD=100010010001100001100001=1000011001100001 For B2, with rows indexed by pairs of partitions, 2∅,12∅,11,∅2,∅12 and columns indexed by the subsets ∅,1,2,12, D==10000100011000100001 picture of bruhat graph
and
DtD=1000001100001100000110000100011000100001=1000021001200001 For
I25, with rows and columns indexed by
χ1+,χ21,χ22,χ1-, and columns indexed by the subsets
∅,1,2,12,
D=1000011001100001 picture of bruhat graph
and
DtD=10000110011000011000011001100001=1000022002200001 For
G2, with rows indexed by pairs of partitions,
χ1++,χ1+-,χ21,χ22,χ1-+,χ1--, and columns indexed by the subsets
∅,1,2,12,
D=100001000110011000100001 picture of bruhat graph
and
DtD=100000011100001110000001100001000110011000100001=1000032002300001 So, in general,
C=10000⌊m2⌋⌊m-12⌋00⌊m-12⌋⌊m2⌋00001 for
I2m. If
m is odd then
C=10000m2m-1200m-12m-1200001 and
D=10000110⋮⋮⋮⋮01100001 with rows indexed by
χ1+,χ21,χ22,…,χ2m-12,χ1-, and columns indexed by the subsets
∅,1,2,12. If
m is even then
C=10000m2m-1200m-12m200001 and
D=1000010001100110⋮⋮⋮⋮011000100001 with rows indexed by
χ1++,χ1+-,χ21,χ22,…,χ2m-32,χ1-+,χ1--, and columns indexed by the subsets
∅,1,2,12.
References [PLACEHOLDER]
[BG]
A. Braverman and
D. Gaitsgory,
Crystals via the affine Grassmanian,
Duke Math. J.
107 no. 3, (2001), 561-575;
arXiv:math/9909077v2,
MR1828302 (2002e:20083)
page history