A folding example
Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville, VIC 3010 Australia
aram@unimelb.edu.au
Last update: 10 April 2012
A folding example
For the group G = S L 3 ( ℂ ( ( t ) ) ) ,
x α 1
( c )
=
1
c
0
0
1
0
0
0
1
,
h α 1 ∨
( c )
=
c
0
0
0
c - 1
0
0
0
1
,
n 1
=
0
1
0
- 1
0
0
0
0
1
,
x α 2
( c )
=
1
0
0
0
1
c
0
0
1
,
h α 2 ∨
( c )
=
1
0
0
0
c
0
0
0
c - 1
,
n 2
=
1
0
0
0
0
1
0
- 1
0
,
x α 0
( c )
=
1
0
0
0
1
c
c t
0
1
,
h α 0 ∨
( c )
=
c - 1
0
0
0
1
0
0
0
c
,
n 0
=
0
0
- t - 1
0
1
0
t
0
0
.
Let
w
=
s 2 s 1
s 0 s 2
s 0 s 1
s 0 s 2
s 0
and
v
=
s 2 s 1
s 0 s 2
s 1 s 2
s 0
so that
w
=
t 2
0
0
0
0
1
0
- t - 2
0
and
v
=
0
- 1
0
t 2
0
0
0
0
t - 2
.
We shall use Theorem 7.1 to show that the points of
I w I ∩ U - v I
are
x 2 ( c 1 )
n 2 - 1
x 1 ( c 2 )
n 1 - 1
x 0 ( c 3 )
n 0 - 1
x 2 ( c 4 )
n 2 - 1
x 0 ( c 5 )
n 0 - 1
x 1 ( c 6 )
n 1 - 1
x 0 ( c 7 )
n 0 - 1
x 2 ( c 8 )
n 2 - 1
x 0 ( c 9 )
n 0 - 1
I ,
with c 1 , ... , c 9 ∈ ℂ such that
c 1 = 0 ,
c 2 = 0 ,
c 3 = 0 ,
c 4 = 0 ,
c 5 ≠ 0 ,
c 6 = 0 ,
c 7 ≠ 0 ,
c 9
=
c 7 - 1 c 8 .
(FEg 1)
Precisely,
x 2 ( 0 )
n 2 - 1
x 1 ( 0 )
n 1 - 1
x 0 ( 0 )
n 0 - 1
x 2 ( 0 )
n 2 - 1
x 0 ( c 5 )
n 0 - 1
x 1 ( 0 )
n 1 - 1
x 0 ( c 7 )
n 0 - 1
x 2 ( c 8 )
n 2 - 1
x 0 ( c 7 - 1 c 8 )
n 0 - 1
is equal to u 9 v 9 b 9 , with
u 9 ∈ U -
,
v 9 ∈ N ,
b 9 ∈ I
given by
u 9
=
1
0
0
c 5 - 1 - c 5 - 2 c 7 - 1 c 8 t
1
0
c 5 - 1 c 7 - 1 t - 2
0
1
,
v 9
=
0
1
0
- t 2
0
0
0
0
t - 2
,
b 9
=
c 5 - 1 - c 5 - 2 c 7 - 1 c 8 t
- c 5 - 2 c 7 - 1 c 8 2
c 5 - 2 c 7 - 2 c 8 2
- t 2
c 5 c 7 + c 8 t
- c 5 - c 7 - 1 c 8 t
- c 5 - 1 c 7 - 1 t 2
- c 5 - 1 c 7 - 1 c 8 t
c 7 - 1 + c 5 - 1 c 7 - 2 c 8 t
,
(FEg 2)
so that
u 9
=
x - α 2 ( d 1 )
x - φ ( d 2 )
x - α 2 - δ ( d 4 )
x - α 1 ( d 5 )
x - α 2 - 2 δ ( d 6 )
x - φ - 3 δ ( d 7 )
x - α 1 + δ ( d 8 )
x - α 2 - 3 δ ( d 9 )
with
d 1
=
d 2
=
d 3
=
d 4
=
0 ,
d 5
=
c 5 - 1 ,
d 6
=
0 ,
d 7
=
c 5 - 1
c 7 - 1 ,
d 8
=
- c 5 - 2
c 7 - 1
c 8 ,
d 9
=
0 .
Pictorially, the walk with labels
c 1 , ... , c 9
becomes
,
the labeled folded path with labels d 1 , ... , d 9 .
The step by step computation is as follows:
Step 1
If c 1 = 0 then
x 2 ( c 1 )
n 2 - 1
=
x - α 2 ( 0 )
n 2 - 1
=
u 1 v 1 b 1 ,
with
u 1
=
x - α 2 ( 0 ) ,
v 1
=
1
0
0
0
0
- 1
0
1
0
,
and
b 1
=
1 .
Step 2
If c 2 = 0 then, since
v 1 x 1 ( c 2 )
v 1 - 1
=
x φ ( c 2 ) ,
u 1 v 1 b 1
x 1 ( c 2 )
n 1 - 1
=
u 1 x φ ( c 2 ) v 1
n 1 - 1
b 1
=
u 1 x - φ ( 0 )
v 1
n 1 - 1
b 1
=
u 2 v 2 b 2 ,
with
u 2
=
u 1 x - φ ( 0 ) ,
v 2
=
v 1 n 1 - 1
=
0
- 1
0
0
0
- 1
1
0
0
and
b 2
=
1 .
Step 3
If c 3 = 0 then, since
v 2 x 0 ( c 3 )
v 2 - 1
=
x α 2 + δ ( - c 3 ) ,
u 2 v 2 b 2
x 0 ( c 3 )
n 0 - 1
=
u 2
x α 2 + δ ( - c 3 )
v 2
n 0 - 1
b 2
=
u 2
x - α 2 - δ ( 0 )
v 2
n 0 - 1
b 2
=
u 3 v 3 b 3 ,
with
u 3
=
u 2 x - α 2 - δ ( 0 ) ,
v 3
=
v 2 n 0 - 1
=
0
- 1
0
t
0
0
0
0
t - 1
,
and
b 3
=
1 .
Step 4
If c 4 = 0 then, since
v 3 x 2 ( c 4 )
v 3 - 1
=
x φ + δ ( - c 4 ) ,
u 3 v 3 b 3
x 2 ( c 4 )
n 2 - 1
=
u 3 x φ + δ ( - c 4 )
v 3
n 2 - 1
b 3
=
u 3 x - φ - δ ( 0 )
v 3
n 2 - 1
b 3
=
u 4 v 4 b 4 ,
with
u 4
=
u 3 x - φ - δ ( 0 ) ,
v 4
=
v 3 n 2 - 1
=
0
0
1
t
0
0
0
t - 1
0
and
b 4
=
1 .
Step 5
If c 5 ≠ 0 then by the folding law and the fact that
v 4 x - α 0 ( c 5 - 1 )
v 4 - 1
=
x - α 1 ( c 5 - 1 ) ,
u 4 v 4 b 4
x 0 ( c 5 )
n 0 - 1
=
u 4 v 4
x - α 0 ( c 5 - 1 )
x α 0 ( - c 5 )
h α 0 ∨ ( c 5 )
b 4
=
u 4
x - α 1 ( c 5 - 1 )
v 4 b 5
=
u 5 v 5 b 5 ,
where
u 5
=
u 4
x - α 1 ( c 5 - 1 ) ,
v 5
=
v 4 ,
and
b 5
=
x α 0 ( - c 5 )
h α 0 ∨ ( c 5 )
b 4
=
c 5 - 1
0
0
0
1
0
- t
0
c 5
.
Step 6
If
c 5 - 1
c 6
=
0
(so c 6 = 0 ) then
u 5 v 5 b 5
x 1 ( c 6 )
n 1 - 1
=
u 5 v 5
x 1 ( c 5 - 1 c 6 )
n 1 - 1
b ′ 5
=
u 5
x - α 2 - 2 δ ( 0 )
v 5
n 1 - 1
b ′ 5
=
u 6 v 6 b 6 ,
with
u 6
=
u 5
x - α 2 - 2 δ ( 0 ) ,
v 6
=
v 5 n 1 - 1
=
0
0
1
0
- t
0
t - 1
0
0
and
b 6
=
b ′ 5
=
1
0
0
0
c 5 - 1
0
- c 6 t
t
c 5
so that
b 5 x 1 ( c 6 )
n 1 - 1
=
x 1 ( c 5 - 1 c 6 )
n 1 - 1
b ′ 5 .
Step 7
If c 5 c 7 ≠ 0 then, since
v 6
x - α 0 ( c )
v 6 - 1
=
x - φ - 2 δ ( c ) ,
u 6 v 6 b 6
x 0 ( c 7 )
n 0 - 1
=
u 6 v 6
x 0 ( c 5 c 7 )
n 0 - 1
b ′ 6
=
u 6 v 6
x - α 0 ( c 5 - 1 c 7 - 1 )
x α 0 ( - c 5 c 7 )
h α 0 ∨ ( c 5 c 7 )
b ′ 6
=
u 6
x - φ - 2 δ ( c 5 - 1 c 7 - 1 )
v 6 b 7
=
u 7 v 7 b 7 ,
where
u 7
=
u 6
x - φ - 2 δ ( c 5 - 1 c 7 - 1 ) ,
v 7
=
v 6 ,
and
b ′ 6
=
c 5
- 1
0
0
c 5 - 1
0
0
0
1
and
b 7
=
x α 0 ( - c 5 c 7 )
h α 0 ∨ ( c 5 c 7 )
b ′ 6
=
c 7 - 1
- c 5 - 1 c 7 - 1
0
0
c 5 - 1
0
- c 5 t
t
c 5 c 7
,
so that
b 6 x 0 ( c 7 )
n 0 - 1
=
x 0 ( c 5 c 7 )
n 0 - 1
b ′ 6 .
Step 8
No restrictions on
c 5 - 2
c 7 - 1
c 8 .
Since
v 7
x α 2 ( c )
v 7 - 1
=
x - α 1 + δ ( - c ) ,
u 7 v 7 b 7
x 2 ( c 8 )
n 2 - 1
=
u 7 v 7
x 2 ( c 5 - 2 c 7 - 1 c 8 )
n 2 - 1
b ′ 7
=
u 7
x - α 1 + δ ( - c 5 - 2 c 7 - 1 c 8 )
v 7
n 2 - 1
b ′ 7
=
u 8 v 8 b 8 ,
with
u 8
=
u 7
x - α 1 + δ ( - c 5 - 2 c 7 - 1 c 8 ) ,
v 8
=
v 7 n 2 - 1
=
0
1
0
0
0
t
t - 1
0
0
,
and
b 8
=
b ′ 7
=
c 7 - 1
- c 5 - 1 c 7 - 1 c 8
c 5 - 1 c 7 - 1
- c 5 t
c 5 c 7 + c 8 t
- t
- c 5 - 1 c 7 - 1 c 8 t
c 5 - 2 c 7 - 1 c 8 2 t
c 5 - 1 - c 5 - 2 c 7 - 1 c 8 t
,
so that
b 7 x 2 ( c 8 )
n 2 - 1
=
x 2 ( c 5 - 2 c 7 - 1 c 8 )
n 2 - 1
b ′ 7 .
Step 9
If
c 5 - 1
c 7 c 9
-
c 5 - 1 c 8
=
0
(so c 9 = c 7 - 1 c 8 ) then
u 8 v 8 b 8
x 0 ( c 9 )
n 0 - 1
=
u 8 v 8
x 0 ( c 5 - 1 c 7 c 9
-
c 5 - 1 c 8 )
n 0 - 1
b ′ 8
=
u 8
x - α 2 - 3 δ ( 0 )
v 8
n 0 - 1
b ′ 8
=
u 9 v 9 b 9
with u 9 , v 9 and b 9 as in (FEg 2) .
Notes and References
These notes are taken from section 8 of the paper
[PRS]
J. Parkinson, A. Ram, and C. Schwer,
Combinatorics in affine flag varieties,
J. Algebra, 321 (2009), 3469-3493.
page history