Homework 9: Calculus and Analytic Geometry

Homework 9: Calculus and Analytic Geometry

Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville, VIC 3010 Australia
aram@unimelb.edu.au
and

Department of Mathematics
University of Wisconsin, Madison
Madison, WI 53706 USA
ram@math.wisc.edu

Last updates: 24 February 2010

Problem A. Indefinite integrals.

  1. x 7 dx
  2. x -7 dx
  3. x -1 dx
  4. x 5 3 dx
  5. x - 5 4 dx
  6. x 2 3 dx
  7. 1 x 3 4 dx
  8. 2 x 2 dx
  9. 8-x+2 x 3 - 6 x 3 +2 x -5 +5 x -1 dx
  10. 2-5x 3+2x 1-x dx
  11. x a x 2 +bx+c dx
  12. x 2 - 1 x 2 3 dx
  13. x - 1 x dx
  14. x + 1 x 2 dx
  15. 1+2x 3 x 4 dx
  16. 1+x 3 x dx
  17. 2 x 2 +x-2 x-2 dx
  18. If df dx =x- 1 x 2 and f 1 = 1 2 find f x .

Problem B. Indefinite Integrals with Trigonometric Functions.

  1. 9sinx-7cosx- 6 cos 2 x + 2 sin 2 x + cot 2 x dx
  2. cotx sinx - tan 2 x- tanx cosx + 2 cos 2 x dx
  3. secx secx+tanx dx
  4. cscx cscx-cotx dx
  5. tanx+cotx 2 dx
  6. 1+2sinx cos 2 x dx
  7. 3cosx+4 sin 2 x dx
  8. 1 1-cosx dx
  9. 1 1+cosx dx
  10. tanx secx+tanx dx
  11. cscx cscx-cotx dx
  12. cosx 1+cosx dx
  13. sinx 1-sinx dx
  14. 1+cos2x dx
  15. 1-cos2x dx
  16. 1 1+cos2x dx
  17. 1 1-cos2x dx
  18. 1+sin2x dx
  19. sin 3 x+ cos 3 x sin 2 x cos 2x dx

Problem C. Integrals with exponential functions and inverse functions.

  1. 2 x dx
  2. 6 x 5 -2 x -4 -7x+ 3 x -5+4 e x + 7 x dx
  3. x a + a x + x a + a x dx
  4. x - x 4 3 + 7 x 2 3 -6 e x +1 dx
  5. x 2 -1 x 2 +1 dx
  6. x 6 -1 x 2 +1 dx
  7. x 4 1+ x 2 dx
  8. x 2 1+ x 2 dx
  9. 1+ 1 1+ x 2 - 2 1- x 2 + 5 x x 2 -1 + a x dx
  10. tan -1 sin2x 1+cos2x dx
  11. cos -1 1- tan 2 x 1+ tan 2 x dx
  12. cos -1 sinx dx
  13. cot -1 sin2x 1-cos2x dx

Problem D. Integration by substitution.

  1. 2x+9 5 dx
  2. 7x-3 4 dx
  3. 3x-5 dx
  4. 1 4x+3 dx
  5. 1 3x-4 dx
  6. 1 2x-3 3 2 dx
  7. 4x 2 x 2 +3 dx
  8. x+1 x 2 +2x-3 dx
  9. 4x-5 2 x 2 -5x+1 dx
  10. 9 x 2 -4x+5 3 x 3 -2 x 2 +5x+1 dx
  11. 2x+3 x 2 +3x-2 dx
  12. 2x-1 x 2 -x-1 dx
  13. dx x+a + x+b
  14. dx 1-3x - 5-3x
  15. x 2 1+ x 6 dx
  16. x 3 1+ x 8 dx
  17. x 1+ x 4 dx
  18. x 5 1+ x 3 dx
  19. x 1+x dx
  20. 1 x x 4 -1 dx
  21. x x-1 dx
  22. 1-x 1+x dx
  23. x x 2 -1 dx
  24. x 3x-2 dx
  25. 2x-3 x 2 -3x+5 dx
  26. dx 3-5x
  27. 1+x dx

Problem E. Integrals with trigonometric functions

  1. sin3xdx
  2. cos 5+6x dx
  3. sin 5-3x dx
  4. csc 2 2x+5 dx
  5. sinxcosxdx
  6. sin 3 xcosxdx
  7. cosx sinxdx
  8. cos x x dx
  9. sin ax+b cos ax+b dx
  10. cos 3 xdx
  11. 1 x 2 cos 1 x dx
  12. 2xsin x 2 +1 dx
  13. tan x sec 2 x x dx
  14. sec 2 x 1+tanx dx
  15. sinx 1+cosx dx
  16. sinx 2+3cosx dx
  17. sin2x a 2 + b 2 sin 2 x dx
  18. sin2x a 2 cos 2 x+ b 2 sin 2 x dx
  19. 2cosx-3sinx 3cosx+2sinx dx
  20. 1+cosx x+sinx 3 dx
  21. sinx 1+cosx 2 dx
  22. x 2 sin x 3 dx
  23. sinx sinx-cosx dx
  24. dx 1-tanx
  25. dx 1-cotx
  26. cos2x sinx+cosx 2 dx
  27. cosx-sinx 1+sin2x dx
  28. x sin 3 x 2 cos x 2 dx
  29. sec 2 x 1- tan 2 x dx
  30. 2x sec 3 x 2 +3 tan x 2 +3 dx
  31. sin2x a+bcos2x 2 dx

References [PLACEHOLDER]

[BG] A. Braverman and D. Gaitsgory, Crystals via the affine Grassmanian, Duke Math. J. 107 no. 3, (2001), 561-575; arXiv:math/9909077v2, MR1828302 (2002e:20083)

page history