The Iwahori-Hecke algebra of type <math> <msub> <mi>B</mi><mi>n</mi> </msub> </math>

The Iwahori-Hecke algebra of type Bn

Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville, VIC 3010 Australia
aram@unimelb.edu.au
and

Department of Mathematics
University of Wisconsin, Madison
Madison, WI 53706 USA
ram@math.wisc.edu

Last updates: 10 June 2010

The Iwahori-Hecke algebra of type Bn

Fix p,q * . The Iwahori-Hecke algebra H of type Bn is the algebra given by generators T1 ,, Tn and relations Ti Tj = Ti Tj ,if   i-j >1, T1 T2 T1 T2 = T2 T1 T2 T1   and   Ti T i+1 Ti = T i+1 Ti T i+1 T12 = p- p -1 T1 +1  and   Ti2 = q- q -1 Ti +1,2in.

The Iwahori-Hecke algebra H Bn has dimension 2n n! .

  1. The irreducible representations H αβ of H Bn are indexed by pairs αβ with n boxes in total.
  2. dim H αβ = # of standard tableaux of shape αβ .
  3. The irreducible H Bn -module H αβ is given by S αβ =-span vT | T  is a standard tableau of shape   αβ with basis vT and with H Bn action given by T1 vT =sgn T 1 p sgn T 1 q c T 1 vT , Ti vT = Ti TT vT + 1+ Ti TT v si T ,i=2,3,,n, where Ti TT = q- q -1 1- CT T k-1 /CT T k ,with  CT T k =sgn T k p sgn T k q c T k ,
    1. clt T i is the content of the box containing i in T,
    2. sgn T i is the sign of the box containing i in T,
    3. si T is the same as T except that i and i-1 are switched, and
    4. v si T =0, if si T is not a standard tableau.

Proof.
Let us show that the action satisifes the given relations. The relations Ti Tj = Tj Ti , i-j >1,ij2, and Ti T i+1 Ti = T i+1 Ti T i+1 ,2in, are taken care of by the case of the Iwahori-Hecke algebra of type A.

Define X ε1 = T1 , V ε1 = Ti T i-1 T2 T1 T2 T i-1 Ti , in H Bn . Then the action of X ε1 ,1in, on the H Bn -module H αβ is given by X ε1 vT =CT T i vT .

Proof.
By the definition of the action T1 Vt =CT T 1 vT = X ε1 vT and, by induction, X ε1 = Ti X ε i-1 Ti vT = Ti CT T i-1 Tk TT vT +CT T i q -1 + Tk TT v sk T = CT T i Ti Ti - q- q -1 vT = CT T i vT .

Note that 1- CT T i-1 CT T i = 1- sgn T i-1 sgn T i p sgn T i-1 q c T i-1 p sgn T i q c T i = sgn T i p sgn T i q c T i -sgn T i-1 p sgn T i-1 q c T i-1 When p=q, q- q -1 1- CT T i-1 CT T i = q- q -1 sgn T i q sgn T i q c T i -sgn T i-1 q sgn T i-1 q c T i-1 = -sgn T i-1 q -c T i-1 -sgn T i-1 q- q -1 1-sgn T i-1 sgn T i q sgn T i +c T i -sgn T i-1 -c T i-1 = 1/ c T i -c T i-1 , if sgn T i =sgn T i-1 , q- q -1 / 1+ q c T i -c T i-1 ±2 , if sgn T i =-sgn T i-1 , and at q=1 this is 1/ c T i -c T i-1 , if sgn T i =sgn T i-1 , 0 , if sgn T i =-sgn T i-1 ,

Let u0 , u1 ,, u r-1 and let q * . The cyclotomic algebra H r,1,n is the algebra given by generators X ε1 , T2 , T3 ,, Tn and relations Ti Tj = Tj Ti ,if   i-j >1, Ti T i+1 Ti = T i+1 Ti T i+1 ,2in-1, X ε1 Tj = Tj X ε1 ,j>1, X ε1 T2 X ε1 T2 = T2 X ε1 T2 X ε1 , X ε 1 - u0 X ε1 - u1 X ε1 - u r-1 =0, Ti2 = q- q -1 Ti +1,2in.

If pj = ξj where ξ= e 2πi/r and q=1 then H r,1,n =G r1n . Define X εk = Ti T i-1 T2 X ε1 T2 T i-1 Ti ,for  1in, and Xλ = X1ε λ1 Xnε λn ,  for  λ= λ1 ε1 ++ λn εn , λi . Then X =-span Xλ | λ= λ1 ε1 ++ λn εn , λi is a commutative subalgebra of H r,1,n .

If w Sn , define Tw = T i1 T ip if w= s i1 s ip and p is as small as possible. The cyclotomic Hecke algebra H r,1,n has basis Xλ Tw ,where  w Sn ,λ= λ1 ε1 ++ λn εn ,0 λj r-1, and dim H r,1,n = rn n!.

  1. The irreducible representations Hλ of H r,1,n are indexed by r -tuples λ= λ 0 λ r-1 of partitions with n boxes in total.
  2. dim Hλ = # of standard tableaux of shape λ.
  3. The irreducible H r,1,n -module Hλ is given by Hλ =-span vT | T  is a standard tableau of shape  λ= λ 0 λ r-1 with basis vT and with H r,1,n action given by X ε1 vT = CT T 1 vT , Ti vT = Ti TT vT + q -1 + Ti TT v si T ,i=2,3,,n, where Ti TT = q- q -1 1- CT T k-1 /CT T k ,with  CT b = u s b q 2c b ,
    1. c b is the content of the box b,
    2. T i is the box containing i in T,
    3. si T is the same as T except that i and i-1 are switched, and
    4. v si T =0, if si T is not a standard tableau.

The action of the elements X εi ,1in, on Hλ is given by X εi vT =CT T i vT , for all standard tableaux T of shape λ.

References [PLACEHOLDER]

[BG] A. Braverman and D. Gaitsgory, Crystals via the affine Grassmanian, Duke Math. J. 107 no. 3, (2001), 561-575; arXiv:math/9909077v2, MR1828302 (2002e:20083)

page history