620-295 Real Analysis with Applications, Lecture 29

620-295 Real Analysis with Applications, Lecture 29

Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville, VIC 3010 Australia
aram@unimelb.edu.au
and

Department of Mathematics
University of Wisconsin, Madison
Madison, WI 53706 USA
ram@math.wisc.edu

Last updates: 4 February 2009

Taylor Series

If f: a b and f N+1 : a b is continuous then f x = a 0 + a 1 x-a + a 2 x-a 2 + a N x-a N +Error N , where a l = 1 l! f l a and there exists c ax such that Error N = 1 N+1 ! f N+1 c x-a N+1 .

Stone-Weierstrass

If f: a b is a continuous function then there exists a sequence of polynomials p 1 p 2 such that p 1 p 2 converges uniformly to f.

So essentially any continuous function is close to a power series f x = a 0 + a 1 x+ a 2 x 2 +

Triginometric Series

f x = c 0 + c 1 e ix + c -1 e -ix + c 2 e 2ix + c -2 e -2ix +

If k then sin kx = e kix - e -kix 2i andcos kx = e kix + e -kix 2 and e ikx =cos kx +isin kx and e -ikx=cos kx -isin kx .

So

f x = c 0 + c 1 cos x +isin x + c 2 cos 2x +isin 2x + + c -1 cos x -isin x + c -2 cos 2x -isin 2x + = c 0 + c 1 + c -1 cos x +i c 1 - c -1 sin x + c 2+ c -2 cos 2x +i c 2 + c -2 + sin 2 x = a 0 + a 1 cos x + b 1 sin x + a 2 cos 2x + b 2 sin 2x + where a 0 = c 0 , a k = c k + c -k and b k =i c k - c -k .

Let k.

(a) 1 2π 0 2π e ikx dx = 0,if  k0 1,if  k=0 (b) 1 2π 0 2π e ikx e -ilx dx = δ kl ,where   δ kl = 0,if  kl 1,if  k=l
(c) If f x = c 0 + c 1 e ix + c -1 e -ix + c 2 e i2x + c -2 e i -2x +
then c k = 1 2π 0 2π f x e i -kx dx

Proof (a)

If k0 then 1 2π 0 2π e ikx dx = -i 2πk e ikx | x=0 x=2π = -i 2πk e 2πi - e 0 = -i 2πk 1-1 = -i 2πk .0=0.

If k=0 then 1 2π 0 2π e ikx dx = 1 2π 0 2π e 0 dx= 1 2π 0 2π dx= 1 2π x | x=0 x=2π = 1 2π 2π-0 =1.

Proof (b)

1 2π 0 2π e ikx e -ilx dx= 1 2π 0 2π e i k-l x dx = 0,if  kl 1,if  k=l,

by part (a).

Proof (c)

1 2π 0 2π f x e -ikx dx= 1 2π 0 2π l c l e ilx e i -k x dx = 1 2π l c l 0 2π e i l-k x dx= c k .

Example: Consider f: 0 2π given by f x = x 2 . Write f x = c 0 + c 1 e ix + c -1 e -ix + c 2 e i2x + c -2 e i -2x +

Then c 0 = 1 2π 0 2π f x dx= 1 2π 0 2π x 2 dx= 1 2π x 3 3 | 0 2π = x 3 3 2π 3 3 = 4 π 2 3

and c k = 1 2π 0 2π x 2 e -kx dx.

x 2 e -ikx dx = 1 -ik x 2 e -ikx - 2x e -ikx -ik dx = i x 2 k e -ikx -( 2x e -ikx -ik 2 - 2x e -ikx -ik 2 dx) = i x 2 k e -ikx + 2x e -ikx k 2 + 2 e -ikx -ik 3

So c k = 1 2π 0 2π x 2 e -ikx dx = i 2π 2 2πk e -ik2π + 2 2π e -ik2π 2π k 2 = 2πi k + 2 k 2 .

So a k = c k + c -k = 2πi k + 2 k 2 + 2πi -k + 2 k 2 = 4 k 2

and b k =i c k - c -k =i 2πi k + 2 k 2 - 2πi -k + 2 k 2 =i.2. 2πi k =- 4π k .

So x 2 = 4 π 2 3 +4cos x -4πsin x + 4 4 cos 2x - 4π 2 sin 2x + = 4 π 2 3 + k=1 4 k 2 cos kx - 4π k sin kx .

If x=π then

π 2 = 4 π 2 3 + k=1 4 k 2 cos kπ - 4π k sin kπ = 4 π 2 3 + k=1 -1 k 4 k 2 .

So - π 2 3 = k=1 4 k 2   and   π 2 12 = k=1 -1 k-1 1 k 2

References [PLACEHOLDER]

[BG] A. Braverman and D. Gaitsgory, Crystals via the affine Grassmanian, Duke Math. J. 107 no. 3, (2001), 561-575; arXiv:math/9909077v2, MR1828302 (2002e:20083)

page history