Murphy elements <m:math><m:mo>ℂ</m:mo><m:msub><m:mi>A</m:mi><m:mi>k</m:mi></m:msub><m:mfenced><m:mi>r</m:mi><m:mi>p</m:mi><m:mi>n</m:mi></m:mfenced></m:math>

Murphy elements Akrpn

Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville, VIC 3010 Australia
aram@unimelb.edu.au
and

Department of Mathematics
University of Wisconsin, Madison
Madison, WI 53706 USA
ram@math.wisc.edu

Last updates: 20 June 2010

Murphy elements Akrpn

Let S12k and let ISS'. Define bS,dIAk by bS=SS',ll'lS  and  dIS=I,Icll'lS. For example, in A9, if S=2458 and I=244'58 then

bS=

and

dI=

Note that dI=dIc,dSS'=d=bS,dll'=dll'c=bS-l. For k120 and r>0, Zk,r=n2+S1-1Sn-1bS+κI=0modr-1κIdI-bS, where the outer sum is over S12k such that S and the inner sum is over ISS' such that dIAkr1n and dIbS.

  1. For n,r0,κr,n=1rm=0r-11i<jntimtj-msij is a central element of Gr,p,n. κr,n=bλcb,as operators on  Gr,p,nλj, the irreducible Gr,p,n-module indexed by λj, where λ=λ0λr-1 is a multipartition with n boxes.
  2. Let n,k0. Then, κr,n=Zk,r  and  κn-1=Zk+12r,as operators on  Vk.
  3. Let n,k120. Then Zkr is a central element of Akrpn, and, if n is such that Akrpn is semisimple then Zkr=bλcb,as operators on  Akλ, where Akλ is the irreducible Akrpn-module indexed by λ.

Proof.

i=1ntimvi1vik=i=1timvi1timvik=i=11-Eii+ξmEiivi1(=i1',,ik'I1kξm-1IlIcδilil'lIcδiliδil'ivi1'vik'=I1kξm-1IbI=n+kξm-1+I2ξm-1IbI=n-k+kξm+I2ξm-1IbI.

References [PLACEHOLDER]

[BG] A. Braverman and D. Gaitsgory, Crystals via the affine Grassmanian, Duke Math. J. 107 no. 3, (2001), 561-575; arXiv:math/9909077v2, MR1828302 (2002e:20083)

page history