α1α2The typeG2root systemω2ω10Hα1Hα2Hα1H2α1+α2H3α1+α2Hα2Hα1+α2H3α1+2α2+δH3α1+2α2Hα1+α2+δHα2+δH3α1+α2+δH2α1+α2+δHα1+δCCs2Cs2s1Ct1,1,q2≠1t1,-1,q2≠±1Cs1CCs1Cs1s2Cs1s2s1Cs1s2s1s2Cs1s2s1s2s1Ct13,1,q2≠1,q6≠1tz,1,q2≠1,zgenericCs2Cs2s1Cs2s1s2Cs2s1s2s1Cs2s1s2s1s2CCs1Cs2Cs1s2Cs2s1Cs1s2s1Cs2s1s2Cs1s2s1s2Cs2s1s2s1Cs1s2s1s2s1Cs2s1s2s1s2Cs1s2s1s2s1s2Ct1,z,q2≠1,zgenerictz,wz,wgenericCs1Cs2Cs1s2Cs2s1Cs1s2s1Cs2s1s2Cs1s2s1s2Cs2s1s2s1Cs1s2s1s2s1Cs2s1s2s1s2Cs1s2s1s2s1s2CCs1Cs2Cs1s2Cs2s1Cs1s2s1Cs2s1s2Cs1s2s1s2Cs2s1s2s1Cs1s2s1s2s1Cs2s1s2s1s2Cs1s2s1s2s1s2Ctq2,z,q2≠1,zgenerictz,q2≠1,zgenericCs1Cs2Cs1s2Cs2s1Cs1s2s1Cs2s1s2Cs1s2s1s2Cs2s1s2s1Cs1s2s1s2s1Cs2s1s2s1s2Cs1s2s1s2s1s2CCs1Cs2Cs1s2Cs2s1Cs1s2s1Cs2s1s2Cs1s2s1s2Cs2s1s2s1Cs1s2s1s2s1Cs2s1s2s1s2Cs1s2s1s2s1s2Ctq2,q2,qgenerictq2,q2,qa primitive twelfth root of unityCs1Cs2Cs1s2Cs2s1Cs1s2s1Cs2s1s2Cs1s2s1s2Cs2s1s2s1Cs1s2s1s2s1Cs2s1s2s1s2Cs1s2s1s2s1s2CCs1Cs2Cs1s2Cs2s1Cs1s2s1Cs2s1s2Cs1s2s1s2Cs2s1s2s1Cs1s2s1s2s1Cs2s1s2s1s2Cs1s2s1s2s1s2Ct13,q2,q2≠1,qgenerictq2,-q-2qgenericorq2a primitive third or fifth root of unityorq2a primitive fourth or fifth root of unityCs1Cs2Cs1s2Cs2s1Cs1s2s1Cs2s1s2Cs1s2s1s2Cs2s1s2s1Cs1s2s1s2s1Cs2s1s2s1s2Cs1s2s1s2s1s2Ctq2,q2,q2a primitive sixth root of unityCs1Cs2Cs1s2Cs2s1Cs1s2s1Cs2s1s2Cs1s2s1s2Cs2s1s2s1Cs1s2s1s2s1Cs2s1s2s1s2Cs1s2s1s2s1s2Ct1,1,q2=1Cs2Cs2s1Cs2s1s2Cs2s1s2s1Cs2s1s2s1s2CMNCs2Cs2s1CMNt1,q2,q2≠-1t1,q2,q2=-1Cs2Cs2s1Cs2s1s2Cs2s1s2s1Cs2s1s2s1s2CCs2Cs2s1Cs2s1s2Cs2s1s2s1Cs2s1s2s1s2Ct1,q2,q2a primitive third root of unityt1,q2,q2not a primitive third root of unity,q2≠-1Cs1Cs1s2CCs2Cs2s1Cs2s1s2Cs1Cs1s2CMNt-1,1,q2=1t±q-1,q2,q2≠1Cs1CMNCs1Cs1s2Cs1s2s1Cs1s2s1s2Cs1s2s1s2s1CMNtq2,1,q2a primitive third root of unitytq2,1,q2a primitive fourth root of unityCs1Cs1s2Cs1s2s1Cs1s2s1s2Cs1s2s1s2s1CMNtq2,1,q2not a primitive third or fourth root of unityCs1Cs1s2Cs1s2s1Cs1s2s1s2Cs1s2s1s2s1CMNCs1Cs1s2Cs1s2s1Cs1s2s1s2Cs1s2s1s2s1Ctα2,1,q2not a primitive third or fourth root of unitytq2,1,q2a primitive fourth root of unityCs1Cs2Cs1s2Cs2s1Cs1s2s1CMNCs1Cs2Cs1s2Cs2s1Cs1s2s1CMNtq2,±q-3,P(t)={α1}tq2,q2,q10=1Cs1Cs1s2Cs1s2s1Cs1s2s1s2Cs1s2s1s2s1Ctq2,1,q2a primitive fourth root of unity
From "The Pieri-Chevalley formula"
ω2α2α1ω2α2α1ω2α2α1
From "Classification and construction of calibrated representations"
Case (1)Case (2)Case (3)Case (4)
From ""Garnir relations” and an analogue of Young’s natural basis"
α1α2α1+α2ω2ω1The typeA2root systemHα1Hα2ω1ω20The weight latticePHα1Hα2Hα1+α2TQHα1Hα2Hα1+α2Hα1+α2+δHα1+δHα2+δt1,1t1,q2t1,ztz,wtq2,1tq2,q2tq2,zFigure 1: Representatives of some central characters of modules overH∼, with generalq.Hα1Hα1+δHα1-δHα1Hα2-δHα2+δHα2Hα1+α2Hα1+α2-δHα1+α2+δt1,1t1,q2t1,ztz,wtq2,1tq2,q2tq2,zFigure 2:q2a primitive third root of unity.Hα1Hα1±δHα2±δHα2Hα1+α2Hα1+α2±δt1,1t1,q2t1,ztz,wtq2,zFigure 3:q2-1.Hα1Hα2Hα1+α2t1,1tz,wtq2,zFigure 4:q2=1.(M(t))tgen=M(t)(M(t))tgen(M(t))s2tgen(M(t))s1s2tgen(M(t))t(M(t))s2t(M(t))s1s2t(M(t))s1s2s1t(M(t))s2s1t(M(t))s1tt1,1,q2≠1t1,z,q2≠1tz,w(M(t))t(M(t))s2t(M(t))s1s2t(M(t))s1s2s1t(M(t))s2s1t(M(t))s1t(M(t))t(M(t))s2t(M(t))s1s2t(M(t))s1s2s1t(M(t))s2s1t(M(t))s1t(M(t))t(M(t))s2t(M(t))s1s2t(M(t))s1s2s1t(M(t))s2s1t(M(t))s1ttq2,q2,q4≠1,q6≠1tq2,q2,q2a primitive third root of unitytq2,z,q2≠1(M(t))t(M(t))s2t(M(t))s1s2t(M(t))t(M(t))s2s1t(M(t))s1t(M(t))t(M(t))s2t(M(t))s1s2tt1,q2,q4≠1tq2,1,q4≠1t1,q2,q2=-1(M(t))t(M(t))s2t(M(t))s1s2t(M(t))t(M(t))s2s1t(M(t))s1tt1,q2,q4≠1tq2,1,q4≠1(M(t))t(M(t))s2t(M(t))s1s2tt1,q2,q2=-1(M(t))t=M(t)(M(t))t(M(t))s2t(M(t))s1s2t(M(t))t(M(t))s2t(M(t))s1s2t(M(t))s2s1s2t(M(t))s2s1t(M(t))s1tt1,1,q2=1t1,z,q2=1tz,w,q2=1
From "Type C2"
α1α1+α22α1+α2α2The typeC2root systemHα1Hα2ω1ω2The weight latticeP.Hα1Hα2H2α1+α2Hα1+α2Hα1+α2+δH2α1+α2+δHα1+δHα2+δThe torusTQHα1Hα1Hα2Hα1+δHα1Hα1Hα2Hα1+δCase 1:∣Z(t)∣≥2, so thattCase 2:∣Z(t)∣=1, so thattlies on at least two hyperplanesHα.lies on exactly one hyperplaneHα.Hα1Hα1Hα2Hα1+δHα1Hα1Hα2Hα1+δCase 3:∣Z(t)∣=∅,α1∈P(t), so thattCase 3:∣Z(t)∣=∅,α1∉P(t), so thattlies onHα1±δ, but not on anyHα.does not lie onHα1±δor anyHα.Hα1Hα2Hα1+α2H2α1+α2t1,1t1,q2t1,ztq2,q2tq,1tq2,ztz,wtz,q2tq2,1t-q,1Figure 5: Representatives of some possible central characters ofH∼-modules with genericq.Hα1Hα2Hα1+α2H2α1+α2t1,1t1,q2t1,ztq2,q2tq,1tq2,ztz,wtz,q2tq2,1t-1,1tz,1Figure 6: Representatives of the possible central characters of modules overH∼, withqa primitive eighth root of unity.Hα1Hα2Hα1+α2H2α1+α2t1,1t1,q2t1,ztq2,q2t±q,1tq2,ztz,wtz,q2tq2,1t-1,1tz,1Figure 7: Representatives of the possible central characters of modules overH∼, withq2a primitive third root of unity.Hα1Hα2Hα1+α2H2α1+α2t1,1tq2,1t1,ztq,1tq2,ztz,wtz,q2t-1,1tz,1Figure 8: Representatives of the possible central characters of modules overH∼, withq2=-1.Hα1Hα2Hα1+α2H2α1+α2t1,1t1,ztz,wt-1,1tz,1Figure 9: Representatives of the possible central characters of modules overH∼, withq2=1.M(t)=M(t)tgenM(t)tgenM(t)s2tgenM(t)s1s2tgenM(t)s2s1s2tgenM(t)tgenM(t)s1tgenM(t)s2s1tgenM(t)s1s2s1tgent1,1,q2≠1t1,z,q2≠1tz,1,q2≠1M(t)tgenM(t)s1tgenM(t)tM(t)s1tM(t)s2s1tM(t)s1s2s1tM(t)s2tM(t)s1s2tM(t)s2s1s2tM(t)s2s1s2s1tt-1,1,q≠±itz,wM(t)tM(t)s1tM(t)s2s1tM(t)s1s2s1tM(t)s2tM(t)s1s2tM(t)s2s1s2tM(t)s2s1s2s1tM(t)tM(t)s1tM(t)s2s1tM(t)s1s2s1tM(t)s2tM(t)s1s2tM(t)s2s1s2tM(t)s2s1s2s1tM(t)tM(t)s1tM(t)s2s1tM(t)s1s2s1tM(t)s2tM(t)s1s2tM(t)s2s1s2tM(t)s2s1s2s1ttq2,z,q2≠1tz,q2,q2≠1t-1,q2,q4≠1,q8≠1M(t)tM(t)s1tM(t)s2s1tM(t)s1s2s1tM(t)s2tM(t)s1s2tM(t)s2s1s2tM(t)s2s1s2s1tM(t)tM(t)s1tM(t)s2s1tM(t)s1s2s1tM(t)s2tM(t)s1s2tM(t)s2s1s2tM(t)s2s1s2s1ttq2,q2,qgenerictq2,q2,qa primitive eighth root of unityM(t)=M(t)tt1,1,q2=1Cs1Cs1s2Cs1s2s1CMNCs1CMNtq2,1,q2≠±1tq2,1,qa primitive fourth root of unityCs1Cs1s2Cs1s2s1CCs1Cs1s2Cs1s2s1Ctq2,1,q2a primitive third root of unitytq2,1,qgenericCs2Cs2s1Cs2s1s2CMNt1,q2,qgenericM(t)tgenM(t)s2tM(t)s1s2tM(t)s2s1s2tgenM(t)tgenM(t)s2tM(t)s1s2tM(t)s2s1s2tgent1,q2,qa primitive fourth root of unityt1,q2,qgenericMNt±q,1q2≠1,(excludingt-q,1whenqis a primitive sixth root of unity, andtq,1whenqis a primitive third root of unity.)
totatbHα1-δHα1Hα1+δFigure 2.1.Real parts of central characters in Table 2.1s1tatoFigure 2.2.Real parts of weights of tempered representationss1tatas1tbtbtoFigure 2.3.Calibration graphs for central characters in Table 2.1
From "Classification for A2"
Hα1Hα2Hα1+α2abcdefgoFigure 4.1.Real parts of central characters in Table 4.1Hα1Hα2Hα1+α2tos1tts2ts2s1s2taFigure 4.2.Real parts of weights of tempered representationss1tatas2tas1s2tas2s1s2tas2s1tas1tbtbs2tbs1s2tbs2s1s2tbs2s1tbs1tctcs2tcs1s2tcs2s1s2tcs2s1tcs1tdtds2tds1s2tds2s1s2tds2s1tds1tetes2tes1s2tes2s1s2tes2s1tes1tftfs2tfs1s2tfs2s1s2tfs2s1tfs1tgtgs2tgs1s2tgs2s1s2tgs2s1tgs1totos2tos1s2tos2s1s2tos2s1toFigure 4.3.Calibration graphs for central characters in Table 4.1
From "Classification for C2"
Hα1Hα2Hα1+α2Hα1+2α2ab,cdefgFigure 5.1.Real parts of central characters in Table 5.1Hα1Hα2Hα1+α2Hα1+2α2tos1es1bs2s1es1s2s1s2as1s2s1b,s1s2s1s2cFigure 5.2.Real parts of weights of tempered representationstas2tas1s2tas2s1s2tas1s2s1s2tas1s2s1tas2s1tas1tatbs2tbs1s2tbs2s1s2tbs1s2s1s2tbs1s2s1tbs2s1tbs1tbtcs2tcs1s2tcs2s1s2tcs1s2s1s2tcs1s2s1tcs2s1tcs1tctds2tds1s2tds2s1s2tds1s2s1s2tds1s2s1tds2s1tds1tdtes2tes1s2tes2s1s2tes1s2s1s2tes1s2s1tes2s1tes1tetfs2tfs1s2tfs2s1s2tfs1s2s1s2tfs1s2s1tfs2s1tfs1tftgs2tgs1s2tgs2s1s2tgs1s2s1s2tgs1s2s1tgs2s1tgs1tgFigure 5.3.Calibration graphs for central characters in Table 5.1
From "Classification for G2"
Hα1Hα2Hα1+3α2H2α1+3α2Hα1+α2Hα1+2α2abc,d,efghijFigure 6.1.Real parts of central characters in Table 6.1tas2tas1s2tas2s1s2tas1s2s1s2tas2s1s2s1s2tas1s2s1s2s1s2tas1s2s1s2s1tas2s1s2s1tas1s2s1tas2s1tas1tatbs2tbs1s2tbs2s1s2tbs1s2s1s2tbs2s1s2s1s2tbs1s2s1s2s1s2tbs1s2s1s2s1tbs2s1s2s1tbs1s2s1tbs2s1tbs1tbtcs2tcs1s2tcs2s1s2tcs1s2s1s2tcs2s1s2s1s2tcs1s2s1s2s1s2tcs1s2s1s2s1tcs2s1s2s1tcs1s2s1tcs2s1tcs1tctds2tds1s2tds2s1s2tds1s2s1s2tds2s1s2s1s2tds1s2s1s2s1s2tds1s2s1s2s1tds2s1s2s1tds1s2s1tds2s1tds1tdtes2tes1s2tes2s1s2tes1s2s1s2tes2s1s2s1s2tes1s2s1s2s1s2tes1s2s1s2s1tes2s1s2s1tes1s2s1tes2s1tes1tetfs2tfs1s2tfs2s1s2tfs1s2s1s2tfs2s1s2s1s2tfs1s2s1s2s1s2tfs1s2s1s2s1tfs2s1s2s1tfs1s2s1tfs2s1tfs1tftgs2tgs1s2tgs2s1s2tgs1s2s1s2tgs2s1s2s1s2tgs1s2s1s2s1s2tgs1s2s1s2s1tgs2s1s2s1tgs1s2s1tgs2s1tgs1tgths2ths1s2ths2s1s2ths1s2s1s2ths2s1s2s1s2ths1s2s1s2s1s2ths1s2s1s2s1ths2s1s2s1ths1s2s1ths2s1ths1thtis2tis1s2tis2s1s2tis1s2s1s2tis2s1s2s1s2tis1s2s1s2s1s2tis1s2s1s2s1tis2s1s2s1tis1s2s1tis2s1tis1titjs2tjs1s2tjs2s1s2tjs1s2s1s2tjs2s1s2s1s2tjs1s2s1s2s1s2tjs1s2s1s2s1tjs2s1s2s1tjs1s2s1tjs2s1tjs1tjFigure 6.2.Calibration graphs for central characters in Table 6.1
ifd1=andd2=thend1d2==n2,(2.1)ℂAk-12↪ℂAk1kd⟼1kdandℂAk-1↪ℂAk-121k-1d⟼1kd(2.2)ε12:ℂAk⟶ℂAk-121kd⟼1kdandε12:ℂAk-12⟶ℂAk-11kd⟼1k-1dε12(∑A∑A)=,ε12(∑A∑A)=,ε12(∑A∑A)=,ε12(∑A∑A)=n.ε1:ℂAk⟶ℂAk-11kd⟼1k-1d.(2.4)trk(d)=d,ford∈Ak.(2.9)∅k=0:k=1:k=2:k=3:k=4:∅∅∅∅∅∅∅k=0:k=0+12:k=1:k=1+12:k=2:k=2+12:k=3:τ=(2,7,8,12,9,16,14,4,15,10,18,6)(3,11)(5,17),sinceτ·123456789101112131415161718=171115172812161839134101456.A∣λ∣,ℤ⟶Ak,ℤb⟼b⋯⋯...........................⏟k-|λ|,ifkis an integer, andA∣λ∣+12,ℤ⟶Ak,ℤb⟼b⋯⋯...........................⏟k-|λ|-12,ifk-12is an integer.
120112Figure 16.12U(αi∨,n)αiMαi∨Ccreal part ofsi(n)imaginary part ofsi(n)Figure 17.q+U(αi∨,n)=U(αi∨,n+αi∨(q))}}}nαi∨(q)n+αi∨(q)0qFigure 18.0-1n2+1n2n1n1+1Figure 19.000-1-10-1-1n4+1n4n1n1+1Figure 20.0000000-100-100-1000-10-10-1-10-100-1-10-10-10-1-1-1-10-1-1-1-10-1-1-1-1n6+1n6n1n1+1Figure 21.α0α1α2σ0(c)ccCσα0(c)Real part ofλ1γλ2-1Imaginary part ofλ1γλ2-1Figure 22.