Preliminaries on classical type combinatorics

Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville, VIC 3010 Australia
aram@unimelb.edu.au

Last update: 23 February 2012

Preliminaries on classical type combinatorics

The Lie algebras đ”€=đ”€đ”©r and đ”°đ”©r are given by đ”€đ”©r=End(V) and đ”°đ”©r= {xâˆˆđ”€đ”©r | tr(x)=0}, with bracket [x,y]= xy-yx. Then đ”€đ”©r has basis {Eij | 1≀i,j≀r}, where Eij is the matrix with 1 in the ij entry and 0 elsewhere. A Cartan subalgebra of đ”€đ”©r is đ”„đ”€đ”©= {xâˆˆđ”€đ”©r | x  is diagonal } with basis {E11,E22,...,Err}, and the dual basis {Δ1,...,Δr} of đ”„đ”€đ”©* is specified by Δi: đ”„đ”€đ”©â†’â„‚ given by Δi(Ejj) =ÎŽij. The form ⟹,⟩: đ”€Ă—đ”€â†’â„‚ given by ⟹x,y⟩= trV(xy) (Pctc 1.1) is a nondegenerate ad-invariant symmetric bilinear form on đ”€ such that the restriction to đ”„ is a nondegenerate form ⟹,⟩: đ”„Ă—đ”„â†’â„‚ on đ”„. {E11,...,Err}  is an orthonormal basis with respect to   ⟹,⟩: đ”„Ă—đ”„â†’â„‚ ,and {Δ1,...,Δr}  is an orthonormal basis with respect to   ⟹,⟩: đ”„*Ă—đ”„*→ℂ, the form on đ”„* induced by the form on đ”„ and the vector space isomorphism Îœ:đ”„đ”€đ”© â†’đ”„đ”€đ”©* given by Îœ(h)= ⟹h,⋅⟩ . A Cartan subalgebra of đ”°đ”©r is đ”„= (E11+⋯+Err) ⊄ = {xâˆˆđ”„đ”€đ”© |  ⟹x,E11+⋯+Err⟩ =0}, the orthogonal subspace to ℂ(E11+⋯+Err). The dominant integral weights for đ”€đ”©r, P+= {λ1Δ1+⋯+λrΔr  |  λi∈℀, Î»1≄⋯≄λr} index the irreducible finite dimensional representations L(λ) of đ”€đ”©r and the irreducible finite dimensional representations of đ”°đ”©r are L(λ_)= Resđ”°đ”©rđ”€đ”©r (L(λ)), where đ”„đ”€đ”©* → đ”„đ”°đ”©*=(Δ1+⋯+Δr)⊄ λ ↩ λ_ is the orthogonal projection.

The matrix units {Eij  |  1≀i,j≀r} form a basis of đ”€đ”©r for which the dual basis with respect to the form in (Pctc 1.1) is {Eji  |  1≀i,j≀r} so that Îłđ”€đ”©= ∑ 1≀i,j≀r Eij⊗Eji= ∑ 1≀i,j≀r i≠j Eij⊗Eji+ ∑ i=1 Eii⊗Eii, and (Pctc 1.2) Îłđ”°đ”©= Îłđ”€đ”©- E+⊗E+, where E+=E11+⋯+Err. (Pctc 1.3) If the Casimir for đ”€đ”©r, Îșđ”€đ”©= ∑ 1≀i,j≀r EijEji, acts on   L(λ)   by the constant   Îșđ”€đ”©(λ) then the Casimir for đ”°đ”©r Îșđ”°đ”©= Îșđ”€đ”©- E+E+ acts on   L(λ_)   by the constant   Îșđ”€đ”©(λ)- 1 r |λ|2, (Pctc 1.4) where |λ|= λ1+⋯+λr.

The Lie algebras đ”€= 𝔰𝔬2r+1,  𝔰𝔭2r, and 𝔰𝔬2r are given by đ”€= {xâˆˆđ”€đ”©(V)  |  (xv1,v2)+ (v1,xv2)=0   for all   v1,v2∈V}, where (,): V×V→ℂ is a nondegenerate bilinear form such that (v1,v2)=Δ(v2,v1), where Δ= { 1, if   đ”€=𝔰𝔬2r+1, -1, if   đ”€=𝔰𝔭2r, 1, if   đ”€=𝔰𝔬2r. } (Pctc 1.5)

Choose a basis   {vi|i∈V^}   of   V, where V^= { {-r,...,-1,0,1,...,r}, if  đ”€=𝔰𝔬2r+1, {-r,...,-1,1,...,r}, if  đ”€=𝔰𝔭2r, {-r,...,-1,1,...,r}, if  đ”€=𝔰𝔬2r, } so that the matrix of the bilinear form (,): V×V→ℂ is J= 1 0 ⋰ 1 Δ ⋰ 0 Δ and đ”€= {xâˆˆđ”€đ”©N | xtJ+Jx=0}, where N=dim(V). Then, as in Molev [Mo, (7.9)] and [Bou, Ch. 8 §13 2.I, 3.I, 4.I], đ”€=span {Fij | i,j∈V^} where Fij= Eij- Ξij E-j,-i, (Pctc 1.6) where Eij is the matrix with 1 in the (i,j)-entry and 0 elsewhere, and Ξij= { 1, if   đ”€=𝔰𝔬2r+1, sgn(i)⋅sgn(j), if   đ”€=𝔰𝔭2r, 1, if   đ”€=𝔰𝔬2r. }

A Cartan subalgebra of đ”€ is đ”„=span {Fii  |  i∈V^} with basis {F11,F22,...,Frr}. (Pctc 1.7) The dual basis {Δ1,...,Δr} of đ”„* is specified by Δi:đ”„â†’â„‚ given by Δi(Fjj)=ÎŽij. The form ⟹,⟩: đ”€Ă—đ”€â†’â„‚ given by ⟹x,y⟩ =12trV(xy) (Pctc 1.8) is a nondegenerate ad-invariant symmetric bilinear form on đ”€ such that the restriction to đ”„ is a nondegenerate form ⟹,⟩: đ”„Ă—đ”„â†’â„‚ on đ”„. {F11,...,Frr}   is an orthonormal basis with respect to   ⟹,⟩: đ”„Ă—đ”„â†’â„‚   and {Δ1,...,Δr}   is an orthonormal basis with respect to &bsp; ⟹,⟩: đ”„*Ă—đ”„*→ℂ, the form on đ”„* induced by the form on đ”„ and the vector space isomorphism Îœ:đ”„â†’đ”„* given by Îœ(h)= ⟹h,⋅⟩.

With Fij as in (Pctc 1.6), đ”€ has basis {Fi,i | 0<i∈V^} âˆȘ {F±i,±j | 0<i<j∈V^} âˆȘ {F0,±i | 0<i∈V^} if   đ”€=𝔰𝔬2r+1, {Fi,i,F-i,i,Fi,-i | 0<i∈V^} âˆȘ {F±i,±j | 0<i<j∈V^} if   đ”€=𝔰𝔭2r, {Fi,i | 0<i∈V^} âˆȘ {F±i,±j | 0<i<j∈V^} if   đ”€=𝔰𝔬2r. With respect to the nondegenerate ad-invariant symmetric bilinear form ⟹,⟩: đ”€âŠ—đ”€â†’â„‚ given in (Pctc 1.8), ⟹x,y⟩ =12 trV(xy), the dual basis with respect to ⟹,⟩ is Dij* =Fji if i≠-j, and Fi,-i* =12 F-i,i. Since the sets {F-i,-i | 0<i∈V^} âˆȘ {F±i,±j | 0<j<i∈V^} âˆȘ {F±i,0 | 0<i∈V^} if   đ”€=𝔰𝔬2r+1, {F-i,-i,F-i,i,Fi,-i | 0<i∈V^} âˆȘ {F±i,±j | 0<j<i∈V^} if   đ”€=𝔰𝔭2r, {F-i,-i | 0<i∈V^} âˆȘ {F±i,±j | 0<j<i∈V^} if   đ”€=𝔰𝔬2r, form alternate bases, and Fi,-i=0 when đ”€=𝔰𝔬2r+1 or đ”€=𝔰𝔬2r, 2Îł= ∑ i,j∈V^ Fij⊗ Fji*+ ∑ i∈V^ Fi,-i⊗ Fi,-i*= ∑ i,j∈V^ Fij⊗ Fji. (Pctc 1.9)

To compute the value in (1.17) Where does this reference? choose positive roots R+= { {Δi-Δj | 1≀i<j≀r}, for   đ”°đ”©r, {Δi±Δj | 1≀i<j≀r} âˆȘ {Δi | 1≀i≀r}, for   𝔰𝔬2r+1, {Δi±Δj | 1≀i<j≀r} âˆȘ {2Δi | 1≀i≀r}, for   𝔰𝔭2r, {Δi±Δj | 1≀i<j≀r}, for   𝔰𝔬2r. } (Pctc 1.10) Since ∑ 1≀i<j≀r Δi-Δj + ∑ 1≀i<j≀r Δi+Δj+ ∑i=1r Δi+ ∑i=1r Δi = ∑i=1r (r-2i+1) Δi+ ∑i=1r (r-1) Δi+ ∑i=1r Δi+ ∑i=1r Δi, it follows that 2ρ= ∑i=1r (y-2i+1)Δi, where   y= ⟚Δ1,Δ1+2ρ⟩= { r, if   đ”€=đ”°đ”©r, 2r, if   đ”€=𝔰𝔬2r+1, 2r+1, if   đ”€=𝔰𝔭2r, 2r-1, if   đ”€=𝔰𝔬2r, } (Pctc 1.11) is the value by which the Casimir Îș acts on L(Δ1). Letting q=eh2, the quantum dimension of V is dimq(V) = trV(ehρ) = Δ+[y], where   [y] = qy-q-y q-q-1 , (Pctc 1.12) since, with respect to a weight basis of V, the eigenvalues of the diagonal matrix ehρ are e 12h (y-2i+1) = q (y-2i+1) .

A standard notation is to view a weight λ= λ1Δ1+⋯+λrΔr as a configuration of boxes with λi boxes in row i. If b is a box in position (i,j) if λ the content of b is c(b)= j-i=   the diagonal number of   b, so that 0 1 2 -1 0 1 -2 (Pctc 1.13) are the contents of the boxes of λ=3Δ1+ 3Δ2+ Δ3. If λ=λ1Δ1+⋯+λnΔn, then ⟚λ,λ+2ρ⟩- ⟚λ-Δi,λ-Δi+2ρ⟩ = 2λi+2ρi-1 = y+2λi-2i = y+2c(λ/λ-), where λ/λ- is the box at the end of row i in λ. By induction ⟚λ,λ+2ρ⟩ = y|λ|+2 ∑ b∈λ c(b), (Pctc 1.14) for λ=λ1Δ1 +⋯+ λrΔr with λi∈℀.

Let L(λ) be the irreducible highest height đ”€-module with highest weight λ, and let V=L(Δ1). Then for đ”€=𝔰𝔬2r+1,𝔰𝔭2r or 𝔰𝔬2r, V≅V* and V⊗V≅L(0)⊕L(2Δ1)⊕L(Δ1+Δ2). (Pctc 1.15) For each component in the decomposition of V⊗V the values by which Îł= ∑ b∈B b⊗b* acts as in (1.17) this reference again are

⟹0,0+2ρ⟩- ⟚Δ1,Δ1+2ρ⟩- ⟚Δ1,Δ1+2ρ⟩ = 0-y-y = -2y, ⟹2Δ1,2Δ1+2ρ⟩- ⟚Δ1,Δ1+2ρ⟩- ⟚Δ1,Δ1+2ρ⟩ = 4+2(y-1)-y-y=2, (Pctc 1.16) ⟚Δ1+Δ2,Δ1+Δ2+2ρ⟩- ⟚Δ1,Δ1+2ρ⟩- ⟚Δ1,Δ1+2ρ⟩ = 2+(y-1)+(y-3)-y-y=-2.
The second symmetric and exterior powers of V are S2(V) = { L(2Δ1)⊕L(0), if   đ”€=𝔰𝔬2r+1   or   𝔰𝔬2r, L(2Δ1), if   đ”€=𝔰𝔭2r, } (Pctc 1.17) and Λ2(V) = { L(Δ1+Δ2), if   đ”€=𝔰𝔬2r+1   or   𝔰𝔬2r, L(Δ1+Δ2)⊕L(0), if   đ”€=𝔰𝔭2r. } (Pctc 1.18) For all dominant integral weights λ L(λ)⊗V = { L(λ)⊕( ⚁ λ± L(λ±)), if   đ”€=𝔰𝔬2r+1   and   λr>0, ⚁ λ± L(λ±), if   đ”€=𝔰𝔭2r,  đ”€=𝔰𝔬2r,  or if   đ”€=𝔰𝔬2r+1   and   λr=0. } (Pctc 1.19)

Notes and References

Where are these from?

References

References?

page history