
Quasitrangular Hopf algebras and the quantum double

1. Quasitriangular Hopf algebras

1.1 Let A be a Hopf algebra with coproduct ∆ and antipode S. Let σ:A⊗A→ A⊗A be the map given by
σ(a⊗ b) = b⊗ a for all a, b ∈ A. Define ∆′ to be the opposite coproduct given by

∆′ = σ ◦∆.

Then A with coproduct ∆′ and antipode S−1 is also a Hopf algebra. This follows by applying S−1 to the
defining relation for the antipode ∑

a

a(1)S(a(2)) =
∑
a

S(a(1))a(2) = ε(a),

for all a ∈ A and using the fact that S (and therefore S−1) is an antihomomorphism.

1.2 A pair (A,R) consisting of a Hopf algebra A and an invertible element R ∈ A⊗A is called quasitriangular
if

a) ∆′(a) = R∆(a)R−1, for all a ∈ A,
b) (∆⊗ id)(R) = R13R23,

c) (id⊗∆)(R) = R13R12,

where, if R =
∑
i ai ⊗ bi then

R12 =
∑
i

ai ⊗ bi ⊗ 1, R13 =
∑
i

ai ⊗ 1⊗ bi, R23 =
∑
i

1⊗ ai ⊗ bi ⊗ 1, etc.

(1.3) Theorem. ([D1] Prop. 3.1) If (A,R) is a quasitriangular Hopf algebra then

a) R12R13R23 = R23R13R12.

b) Ř12Ř23Ř12 = Ř23Ř12Ř23,
where Řij = σ ◦ LRij ∈ End(A ⊗ A), and σ, LR ∈ End(A ⊗ A) are given by σ(a ⊗ b) = b ⊗ a and
left multiplication by R respectively.

c) (ε⊗ id)(R) = 1 = (id⊗ ε)(R).

d) (S ⊗ id)(R) = (id⊗ S−1)(R) = R−1.

e) (S ⊗ S)(R) = R.

Proof. a)
R12R13R23 = R12(∆⊗ id)(R) by (1.2b)

= (∆′ ⊗ id)(R)R12 by (1.2a)

= R23R13R12.

b)
Ř12Ř23Ř12 = σ12LR12σ23LR23σ12LR12

= σ12σ23σ12︸ ︷︷ ︸σ12σ23LR12σ23σ12︸ ︷︷ ︸σ12LR23σ12︸ ︷︷ ︸LR12

= σ13LR23LR13LR12 ,

and
Ř23Ř12Ř23 = σ23LR23σ12LR12σ23LR23

= σ23σ12σ23︸ ︷︷ ︸σ23σ12LR23σ12σ23︸ ︷︷ ︸σ23LR12σ23︸ ︷︷ ︸LR23

= σ13LR12LR13LR23 ,
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c) By (1.2b)

R = (id⊗ id)(R) = (ε⊗ id⊗ id)(∆⊗ id)(R) = (ε⊗ id⊗ id)R13R23 = (ε⊗ id)(R) ·R.

Thus (ε⊗ id)(R) = 1. Similarly, by (1.2c),

R = (id⊗ id)(R) = (id⊗ id⊗ ε)(id⊗∆)(R) = (id⊗ id⊗ ε)R13R23 = (id⊗ ε)(R) ·R.

Thus (id⊗ ε)(R) = 1.

d)
R · (S ⊗ id)(R) = (m⊗ id)(id⊗ S ⊗ id)(R13R23)

= (m⊗ id)(id⊗ S ⊗ id)(∆⊗ id)(R)

= (ε⊗ id)(R) = 1.

So (S ⊗ id)(R) = R−1. Let Aopp be the Hopf algebra which is the same as A except with the opposite
comultiplication and with antipode S−1. It is clear from the defining relations of a quasitriangular Hopf
algebra that (Aopp, R21) is also a quasitriangular Hopf algebra. Thus, it follows by applying the identity
already proved to (Aopp, R21) that

(S−1 ⊗ id)(R21) = (R−1)21

which is equivalent to (id⊗ S−1)(R) = R−1.

e) This follows by letting (id⊗S) act on both sides of the equation (id⊗S−1)(R) = (S⊗ id)(R) from d).
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2. The Quantum double

(2.1) Theorem. ([D1] §13) Let A be a finite dimensional Hopf algebra and let A∗opp denote the Hopf
algebra A∗ except with the opposite comultiplication. Then there exists a unique quasitriangular Hopf algebra
(D(A), R) such that

1) D(A) contains A and A∗opp as Hopf subalgebras.
2) R is the image of the canonical element of A⊗ A∗opp under A⊗ A∗opp → D(A)⊗D(A), i.e. if ei

is a basis of A and ei is the dual basis in A∗opp then

R =
∑

ei ⊗ ei ∈ D(A)⊗D(A).

3) The linear map
A⊗A∗opp → D(A)
a⊗ b 7→ ab

is bijective.

2.2 Remark. If A is infinite dimensional then one may be able to apply the theorem if there is a suitable way
of completing the tensor product D(A)⊗D(A) so that the element R =

∑
ei ⊗ ei is a well defined element

of the completion D(A)⊗̂D(A).

Proof of Theorem 2.1.

2.3 Let the algebra A be the Hopf algebra with basis {er} and multiplication, comultiplication, and skew
antipode given by

eres =
∑
t

mt
rset,

∆(et) =
∑
r,s

µrst er ⊗ es,

σ(et) =
∑
r

σrt er.

The unit and counit will be given by 1 =
∑
tE

tet, and ε(er) = εr respectively. Recall that the skew antipode
is the inverse S−1 of the antipode of A and is the the antipode for the Hopf algebra Aopp which is the same
as the algebra A except with the opposite comultiplication.

2.4 The algebra A∗opp has basis {er} which is dual to the basis {er} of A and has multiplication and
comultiplication given by

eres =
∑
t

µrst et,

∆(et) =
∑
r,s

mt
rse

s ⊗ er.

Then the algebra A⊗A∗opp has basis {eres} and has multiplication given by

(eres ⊗ epeq)(ekel ⊗ emen) = (erese
kel ⊗ epeqemen), (∗)

and comultiplication given by

∆(eres) = ∆(er)∆(es)

=

(∑
u,v

mr
uve

v ⊗ eu
)(∑

p,q

µpqs ep ⊗ eq

)
=
∑
u,v,p,q

mr
uvµ

pq
s e

vep ⊗ eueq.
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Alternatively, we could have chosen to use the basis {eres} instead of the basis {eres}. It is clear from
(∗) that we need to describe a product ese

k in terms of the basis epeq in order to completely describe the
multiplication in A⊗A∗opp.

2.5 We shall use the condition R∆′(a)R−1 = ∆(a) to determine the formula for a product ese
k in terms of

the basis epeq. The relation is

ere
s =

∑
α,β,γ,δ,p

µγβαr σpαm
s
pδγe

δeβ .

This relation is derived as follows.

〈eveb, ejel〉 = 〈eveb,m ◦ σ(el ⊗ ej)〉
= 〈σ ◦∆(eveb), e

l ⊗ ej〉
= 〈∆′(eveb), el ⊗ ej〉
= 〈R∆(eveb)R

−1, el ⊗ ej〉
= 〈R∆(eveb)((id⊗ S−1)(R), el ⊗ ej〉 by (1.3e)

= 〈R⊗∆(eveb)⊗ ((id⊗ S−1)(R), (∆⊗)2(el ⊗ ej)〉

Let us expand the left hand factor of this inner product.

R⊗∆(eveb)⊗ (id⊗ S−1)(R) =
∑
k,p

ek ⊗ ek ⊗∆(eveb)⊗ (id⊗ S−1)(ep ⊗ ep)

=
∑
k,p,q
r,s,t,u

ek ⊗ ek ⊗mv
srµ

ut
b e

reu ⊗ eset ⊗ ep ⊗ σpqeq
(2.5a)

The right hand factor of the inner product expands in the form

(∆⊗)2(el ⊗ ej) = (∆otimes ⊗ id⊗) ◦∆⊗(el ⊗ ej)

= (∆otimes ⊗ id⊗)

( ∑
x,y,w,z

ml
xyµ

wz
j ey ⊗ ew ⊗ ex ⊗ ez

)
=

∑
x,y,w,z
m,n,c,d

my
mnµ

cd
wm

l
xyµ

wz
j en ⊗ ec ⊗ em ⊗ ed ⊗ ex ⊗ ez

=
∑
m,n,x
c,d,z

ml
xmnµ

cdz
j en ⊗ ec ⊗ em ⊗ ed ⊗ ex ⊗ ez

Now let us evaluate the inner product. The inner product picks out only the terms when

k = n, k = c, v = m, b = d, p = x, q = z,

and this term appears with coefficient

ml
xmnµ

cdz
j σpq = ml

pvkµ
kbq
j σpq .

It follows that

〈eveb, ejel〉 =
∑
p,q,k

= ml
pvkµ

kbq
j σpq .

The multiplication rule follows.
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2.6 We shall need the following calculation in our proof that D(A) is quasitriangular. We shall need the
identities in §4 of the notes on co-Poisson Hopf algebras.

∑
γ,α,p,s

µγβαsa σpαm
v
spδγ =

∑
γ.α,n,k,s,p

µγβna µαsn σpαm
k
spm

v
kδγ by 4.1 and 4.4

=
∑

γ,α,n,k

µγβna εnE
kmv

kδγ by 4.11

=
∑

γ,α,n,k

µγβna εnδδmm
v
mγ by 4.2

=
∑
γ,n

µγβna εnm
v
δγ

=
∑
γ,n,k

µγka µβnk εnm
v
δγ by 4.4

=
∑
γ,k

µγka δkβm
v
δγ by 4.5

=
∑
γ

µγβa mv
δγ

2.7 Now we prove that A⊗A∗opp satisfies the first condition (1.2a) for a quasitriangular Hopf algebra.

((σ ◦∆)(eveb))R =
∑

δ,γ,r,s,m

mv
δγµ

rs
b (eδes ⊗ eγer)(em ⊗ em)

=
∑

δ,γ,r,s,m

mv
δγµ

rs
b (eδesem ⊗ eγerem)

=
∑

δ,γ,r,s,m,λ

mv
δγµ

rs
b m

λ
sm(eδeλ ⊗ eγerem)

=
∑

δ,γ,r,s,m,λ
u,t,α,p,β

mv
δγµ

rs
b µ

utα
r σpαm

m
pβum

λ
sm(eδeλ ⊗ eγeβet)

=
∑

δ,γ,r,s,m,λ
u,t,α,p,β,a

mv
δγµ

γβ
a µrsb µ

utα
r σpαm

m
pβum

λ
sm(eδeλ ⊗ eaet)

=
∑

δ,γ,s,m,λ
u,t,α,p,β,a

mv
δγµ

γβ
a µutαsb σpαm

m
pβum

λ
sm(eδeλ ⊗ eaet)

=
∑
δ,γ,s,λ

u,t,α,p,β,a

mv
δγµ

γβ
a µutαsb σpαm

λ
spβu(eδeλ ⊗ eaet)

=
∑

δ,γ,u,t,β,a,λ

mv
δγµ

γβ
a µutb m

λ
βu(eδeλ ⊗ eaet)
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A similar calculation on the right hand side gives

R∆(eveb) =
∑

r,s,t,u,m

mv
srµ

ut
b (em ⊗ em)(ereu ⊗ eset)

=
∑

r,s,t,u,m

mv
srµ

ut
b (eme

reu ⊗ emeset)

=
∑

r,s,t,u,m,a

mv
srµ

ut
b µ

ms
a (eme

reu ⊗ eaet)

=
∑

r,s,t,u,m,a
α,β,γ,δ,p

mv
srµ

ut
b µ

ms
a µγβαm σpαm

r
pδγ(eδeβeu ⊗ eaet)

=
∑

r,s,t,u,m,a
α,β,γ,δ,p,λ

mv
srµ

ut
b µ

ms
a µγβαm σpαm

r
pδγm

λ
βu(eδeλ ⊗ eaet)

=
∑
s,t,u,a

α,β,γ,δ,p,λ

µutb µ
γβαs
a σpαm

v
spδγm

λ
βu(eδeλ ⊗ eaet)

=
∑

δ,γ,u,t,β,a,λ

mv
δγµ

γβ
a µutb m

λ
βu(eδeλ ⊗ eaet)

2.8 It remains to prove the identities (id⊗∆)(R) = R13R12 and (∆⊗ id)(R) = R13R23.

(id⊗∆)(R) =
∑
k

ek ⊗∆(ek)

=
∑
k,r,s

mk
rsek ⊗ es ⊗ er

=
∑
r,s

eres ⊗ es ⊗ er

=
∑
r,s

(er ⊗ 1⊗ er)(es ⊗ es ⊗ 1)

= R13R12.

Similarly, we have that

(∆⊗ id)(R) =
∑
k

∆(ek)⊗ ek

=
∑
k,r,s

µrsk er ⊗ es ⊗ ek

=
∑
r,s

er ⊗ es ⊗ eres

=
∑
r,s

(er ⊗ 1⊗ er)(1⊗ es ⊗ es)

= R13R23.

This completes the proof of Theorem 2.1.
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