Quasitriangular Hopf algebras

Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville, VIC 3010 Australia
aram@unimelb.edu.au

Last updates: 17 November 2011

Quasitriangular Hopf algebras

Let A=Am ΔΡiS be a Hopf algebra and let Ο„ be the 𝔽-linear map Ο„: AβŠ—A β†’ AβŠ—A aβŠ—b ↦ bβŠ—a . Let Ξ”op =Ο„βˆ˜Ξ” so that, if a∈A and Ξ”(a) =βˆ‘a a(1) βŠ— a(2) then Ξ”op(a) = βˆ‘a a(2) βŠ— a(1). Then Am Ξ”op iΞ΅ S-1 is also a Hopf algebra. This follows by applying S-1 to the defining relation for the antipode βˆ‘a a(1) S(a(2)) = βˆ‘a S(a(1)) a(2) = Ξ΅(a) , and using the fact that S (and therefore S-1) is an antihomomorphism.

With the algebra structure on AβŠ—A given by (aβŠ—b) (cβŠ—d) = acβŠ—bd, the map Ο„: AβŠ—Aβ†’AβŠ—A is an algebra automorphism of AβŠ—A and the following diagram commutes

A β†’Ξ” AβŠ—A ↓id ↓τ A β†’Ξ”op AβŠ—A                Sometimes we are lucky and can replace Ο„ by an inner automorphism.

Let U be a Hopf algebra with an invertible element

β„›βˆˆUβŠ—U such that β„›Ξ”(a) β„›-1 = Ξ”op(a), for a∈U. (acc)
The pair Uβ„› is a quasitriangular Hopf algebra if β„›Ξ”(a) β„›-1 = Ξ”op(a), for a∈U, and
(Ξ”βŠ—id)(β„›) = β„›13 β„›23 and (idβŠ—Ξ”) (β„›) = β„›13 β„›12, (cab)
where, if β„›=βˆ‘ biβŠ—bi then β„›12= βˆ‘biβŠ— biβŠ—1, β„›13 =βˆ‘ biβŠ—1βŠ— bi, and β„›23 = βˆ‘1βŠ— biβŠ— bi. The identities in (acc) and (cab) relate the β„›-matrix to coproduct and the relations between the β„› matrix and the counit and antipode are given by
(Ξ΅βŠ—id) (β„›) =1= (idβŠ—Ξ΅) (β„›), (SβŠ—id) (β„›) =β„›-1 = (idβŠ—S-1) (β„›) and (SβŠ—S) (β„›)=β„›. (eSR)
If (U,β„›) is a quasitriangular Hopf algebra then β„› satisfies the quantum Yang-Baxter equation,
β„›12 β„›13 β„›23 = β„›12 (Ξ”βŠ—id)(β„›) = (Ξ”opβŠ—id) (β„›) β„›12 = β„›23 β„›13 β„›12. (QYBE)

For any two U-modules M and N, the map RΛ‡MN : MβŠ—N β†’ NβŠ—M mβŠ—n ↦ βˆ‘bin βŠ—bim INSERT INKSCAPE is a U-module isomorphism since RΛ‡MN (a((mβŠ—n)) = RΛ‡MN ( Ξ”(a)(mβŠ—n) )= Ο„β„›Ξ”(a) (mβŠ—n) = τΔop(a)Ο„ Ο„-1β„› (mβŠ—n) =Ξ”(a) RΛ‡MN (mβŠ—n). In order to be consistent with the graphical calculus the operators RΛ‡MN should be written on the right.

For U-modules M and N and a U-module isomorphism Ο„M :Mβ†’M, INSERT INKSCAPE and the relations in (cab) imply that if M,N and P are U-modules then INSERT INKSCAPE as operators on MβŠ—NβŠ—P. The preceding relations together imply the braid relation INKSCAPE HERE ( RΛ‡MN βŠ—idP) (idNβŠ— RΛ‡MP ) ( RΛ‡NP βŠ—idM ) = ( idMβŠ— RΛ‡NP ) ( RΛ‡MP βŠ—idN ) ( idPβŠ— RΛ‡MN ) .

Ribbon Hopf algebras and the quantum Casimir

By [Dr, Prop. 2.1], the element u in U defined by

u= βˆ‘β„› S(R2) R1 satisfies uxu-1 =S2(x), forx∈U . (udf)

Proof. (This proof is taken from [Dr, proof of Prop. 2.1].) The identity

(β„›βŠ—1) ( βˆ‘a a(1) βŠ— a(2) βŠ— a(3) ) = ( βˆ‘a a(2) βŠ— a(1) βŠ— a(3) ) (β„›βŠ—1)
is
βˆ‘β„›,a R1 a(1) βŠ— R2 a(2) βŠ— a(3) = βˆ‘β„›,a a(2) R1 βŠ— a(1) R2 βŠ— a(3)
So
βˆ‘β„›,a S2( a(3) ) S( R2 a(2) ) R1 a(1) = βˆ‘β„›,a S2( a(3) ) S( a(1) R2 ) a(2) R1
So
βˆ‘β„›,a S( a(2) S( a(3) ) ) S( R2 ) R1 a(1) = βˆ‘β„›,a S2( a(3) ) S( R2 ) S( a(1) ) a(2) R1 (*)
Since
βˆ‘a S( a(1) ) a(2) βŠ— a(3) =1βŠ—a and βˆ‘a a(1) βŠ— a(2) S( a(3) ) =aβŠ—1
the identity in (*) becomes ua= S2(a)u. If
v= βˆ‘β„›-1 S-1 ( (R-1) 2 ) (R-1) 1
then
uv = u βˆ‘β„›-1 S-1 ( (R-1) 2 ) (R-1) 1 = βˆ‘β„›-1 S ( (R-1) 2 ) u (R-1) 1 = βˆ‘ β„›-1 ,β„› S ( R2 (R-1) 2 ) R1 (R-1) 1 =1,
since
βˆ‘ β„›-1 ,β„› R2 (R-1) 2 βŠ— R1 (R-1) 1 = β„›β„›-1 =1.
So S2(v) u= uv=1 and u has both a left inverse and a right inverse. Thus u is invertible and u-1=v. β–‘

[Dr, Prop. 3.2] proves the following important result essentially due to Lyubashenko:

Ξ”(u) = (β„›21 β„›)-1 (uβŠ—u) = (uβŠ—u) (β„›21 β„›)-1 . (Ξ”u)

Proof. (This proof is taken from [Dr, proof of Prop. 3.2].) Let AβŠ—A be the right AβŠ—AβŠ—AβŠ—A -module defined by (x1βŠ—x2) * (y1βŠ—y2 βŠ—y3βŠ—y4) = S(y3)x1 y1βŠ— S(y4)x2 y2 . Then, since u= βˆ‘β„› S(R2) R1 and Ξ”(a) β„›21β„› = β„›21β„› Ξ”(a) , Ξ”(u)β„›21β„› = βˆ‘β„› (SβŠ—S) (Ξ”op (R2)) Ξ”(R1) β„›21β„› = βˆ‘β„› (SβŠ—S) (Ξ”op (R2)) β„›21β„› Ξ”(R1) = β„›21* β„›12 (Ξ”βŠ—Ξ”op) (β„›) . Since β„›12 (Ξ”βŠ—Ξ”op) (β„›) = β„›12 β„›13 β„›23 β„›14 β„›24 = β„›23 β„›13 β„›12 β„›14 β„›24 , Ξ”(u)β„›21β„› = β„›21* β„›12 (Ξ”βŠ—Ξ”op) (β„›) = β„›21* β„›23 β„›13 β„›12 β„›14 β„›24 = (1βŠ—1)* β„›13 β„›12 β„›14 β„›24 = (uβŠ—1)* β„›12 β„›14 β„›24 = (uβŠ—1)* β„›24 = (uβŠ—u), where we have used β„›21* β„›23 = βˆ‘i,j S(bj)bi βŠ—aiaj = (SβŠ—id) ( (βˆ‘i S-1 (bi) βŠ—ai ) (βˆ‘j bjβŠ—aj ) ) =(SβŠ—id) ( (S-1βŠ—id) (β„›21) β„›21 ) =(SβŠ—id) ( (β„›21)-1 β„›21 ) =(SβŠ—id) (1βŠ—1) =1βŠ—1 , (uβŠ—1)* β„›12 β„›14 =βˆ‘i,j uaiaj βŠ—S(bj) bi =(uβŠ—1) (1βŠ—1) =uβŠ—1, (1βŠ—1)* β„›13 =uβŠ—1, and (uβŠ—1)* β„›24 =uβŠ—u. β–‘

Ribbon Hopf algebras and the quantum trace

A ribbon Hopf algebra (U,β„›,v) is a quasitriangular Hopf algebra (U,β„›) with an invertible element v such that

v∈Z(U), v2=uS(u), S(v)=v, Ξ΅(v)=1, Ξ”(v) = (β„›21 β„›)-1 (vβŠ—v), (rbH)
where β„›21 =βˆ‘β„› R2βŠ—R1 if β„› =βˆ‘β„› R1βŠ—R2, and u is as in (udf). Note that v-1 u is grouplike, Ξ”( v-1u ) = v-1u βŠ— v-1u . If M is a U-module and
CM: M β†’ M m ↦ vm so that C MβŠ—N = ( RΛ‡ MN RΛ‡ NM ) -1 (CM βŠ— CN ). (casR)
by the last identity in (rbH).

Examples. Let 𝔀 be a finite dimensional complex semisimple Lie algebra. Both

U=U𝔀 with β„›=1βŠ—1 and v=1, and U=Uh𝔀 with v=e-hρu,
are ribbon Hopf algebras (see [LR, Β§2]).

Let V be a finite dimensional U-module and let V* be the dual module. Let EV be the composition

EV: VβŠ—V* ⟢ v-1 βŠ—1 VβŠ—V* ⟢ RΛ‡ VV* V*βŠ—V ⟢ev 1 ⟢coev VβŠ—V* , (cex)
so that EV is a U-module homomorphism with image a submodule of VβŠ—V* isomorphic to the trivial representation of U.

Let M be a U-module and let ψ∈End(M βŠ—V). Then, as operators on MβŠ—VβŠ— V*,

(1βŠ—EV) (ΟˆβŠ—id) (1βŠ—EV) = (idβŠ—qtrV) (ψ) βŠ—EV , (qtr)
where the quantum trace (idβŠ—qtrV) (ψ) : Mβ†’M is the composition
MβŠ—1 ⟢ idβŠ—coev MβŠ—VβŠ—V* ⟢ ΟˆβŠ—id MβŠ—VβŠ—V* ⟢ idβŠ—v-1 βŠ—id MβŠ—VβŠ—V* ⟢ idβŠ—RΛ‡ VV* MβŠ—V*βŠ—V ⟢idβŠ—ev MβŠ—1 .
The special case when M=1 and ψ=idV is the quantum dimension of V,
dimq(V) = qtrV(idV) . (qdm)

Let V be a finite dimensional U-module, V* the dual module and let CV:Vβ†’V be as defined in (casR). Let x∈V and Ο†βˆˆV*. Let e1,…, en be a basis of V and e1,…, en the dual basis in V*. Let M be a U-module and ψ ∈EndU (MβŠ—V). Then

EV(xβŠ—Ο†) = βŸ¨Ο†, uv-1x ⟩ ( βˆ‘ i=1n eiβŠ—ei ) , (idβŠ—qtrV) (ψ) = (idβŠ—trV) ((1βŠ— uv-1) ψ) , (twr)
EV2 = dimq(V) EV ,and (idβŠ—qtrV) (RΛ‡ VV) = CV-1 . (fan)

Proof. Computing the action of EV on xβŠ—Ο†,

EV(xβŠ—Ο†) = (coev∘ev ∘ RΛ‡ VV* (v-1 βŠ—id) ) (xβŠ—Ο†) = (coev∘ev) ( βˆ‘β„› R2Ο† βŠ— R1v-1 x ) = βˆ‘β„› ⟨ R2Ο† , R1v-1 x ⟩ βˆ‘i=1n eiβŠ—ei = βˆ‘β„› βŸ¨Ο†, S(R2) R1 v-1x ⟩ βˆ‘i=1n eiβŠ—ei = βŸ¨Ο†, uv-1x ⟩ ( βˆ‘ i=1n eiβŠ—ei ),
which establishes the first identity in (twr). If ψji ∈End(M) are such that
ψ(mβŠ—ei) = βˆ‘ j=1n ψji(m) βŠ—ej, then
(idβŠ—qtrV) (ψ)(m) = (idβŠ—ev) (idβŠ— RΛ‡ VV* ) (1βŠ—v-1 βŠ—1) (ΟˆβŠ—id) (idβŠ—coev) (mβŠ—1) = (idβŠ—ev) (idβŠ— RΛ‡ VV* ) (1βŠ—v-1 βŠ—1) ( βˆ‘i,k ψki (m) βŠ—ekβŠ—ei ) = (idβŠ—ev) ( βˆ‘β„›,i,k ψki (m) βŠ— R2ei βŠ— R1 v-1 ek ) = βˆ‘β„›,i,k ψki (m) ⟨ R2ei , R1 v-1 ek ⟩ = βˆ‘β„›,i,k ψki (m) ⟨ ei, S(R2) R1v-1 ek ⟩ = βˆ‘β„›,i,k ψki (m) ⟨ ei, uv-1 ek ⟩ = βˆ‘i ⟨ idβŠ—ei , (1βŠ— uv-1) ψ(mβŠ—ei ) ⟩ = (idβŠ—trV) ((1βŠ— uv-1) ψ)(m)
is the second identity in (twr). The identity EV2 = dimq(V) EV is the special case of (qtr) when M=1 and Ο†=idV. Finally, if x∈V then
(idβŠ—qtrV) (RΛ‡ VV) (x) = βˆ‘i ⟨ idVβŠ—ei, (1βŠ—v-1 u) RΛ‡ VV (xβŠ—ei) ⟩ = βˆ‘β„›,i ⟨ idVβŠ—ei, R2ei βŠ— v-1 uR1x ⟩ = βˆ‘β„›,i R2ei ⟨ ei, v-1 uR1x ⟩ = βˆ‘β„› R2 v-1 uR1x = βˆ‘β„› R2 S2(R1) v-1 ux = u-1 v-1 ux =v-1x = CV-1 (x)
β–‘

The identity (qtr) is the reason that the Jones basic construction often arises in the study of modules for quasitriangular Hopf algebras.

Notes and References

These notes follow Drinfeld [Dr]. Other references are [CP].

What do the identities (eSR) mean in terms of representations?

Following [Dr, Prop. 3.1], the identities in (eSR) are proved as follows: Since β„› =(Ξ΅βŠ—idβŠ—id) (Ξ”βŠ—id) (β„›) =(Ξ΅βŠ—idβŠ—id) β„›13 β„›23 = (Ξ΅βŠ—id)(β„›) β‹…β„›, and β„›= (idβŠ—idβŠ—Ξ΅) (idβŠ—Ξ”)(β„›) = (idβŠ—idβŠ—Ξ΅) β„›13 β„›12 = (idβŠ—Ξ΅)(β„›) β‹…β„›, and so (Ξ΅βŠ—id)(β„›) =1 and (idβŠ—Ξ΅)(β„›) =1. Then, since β„›β‹… (SβŠ—id)(β„›) = (mβŠ—id) (idβŠ—SβŠ—id) (β„›13 β„›23) = (mβŠ—id) (idβŠ—SβŠ—id) (Ξ”βŠ—id) (β„›) = (Ξ΅βŠ—id)(β„›) =1, it follows that (SβŠ—id)(β„›) =β„›-1. Since (Aop,β„›21) is a quasitriangular Hopf algebra with antipode S-1 it follows that (S-1βŠ—id) (β„›21) =(β„›21) -1. So (idβŠ—S-1) (β„›) =β„›-1. Finally, (SβŠ—S)(β„›) =(idβŠ—S) (SβŠ—id)(β„›) =(idβŠ—S)( β„›-1) =(idβŠ—S) (idβŠ—S-1) (β„›) =β„›, which completes the proofs of the identities in (eSR).

[Dr, §2 remark (1)] explains that Lyubashenko says that if γ: U→End(M) is a representation of U then γ(u) is the map

M ⟢∼ MβŠ—1 ⟢1βŠ—coev MβŠ—M*βŠ— M** βŸΆΟ„β„› MβŠ—M*βŠ— M** ⟢evβŠ—1 M**

References

[D] V.G. Drinfeld, Quantum Groups, Vol. 1 of Proccedings of the International Congress of Mathematicians (Berkeley, Calif., 1986). Amer. Math. Soc., Providence, RI, 1987, pp. 198–820. MR0934283

[Dr] V.G. DrinfelΚΉd, Almost cocommutative Hopf algebras, (Russian) Algebra i Analiz 1 (1989), 30–46; translation in Leningrad Math. J. 1 (1990), 321–342. MR1025154

[LR] R. Leduc and A. Ram, A ribbon Hopf algebra approach to the irreducible representations of centralizer algebras: The Brauer, Birman-Wenzl and type A Iwahori-Hecke algebras, Adv. Math. 125 (1997), 1-94. MR1427801.

[Re] N. Yu. Reshetikhin, Quantized universal enveloping algebras, the Yang-Baxter equation and invariants of links I, LOMI preprint no. E–4–87, (1987).

page history