Subalgebras of partition algebras

Representations of the groups G H,H/K,n

Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville, VIC 3010 Australia
aram@unimelb.edu.au
and

Department of Mathematics
University of Wisconsin, Madison
Madison, WI 53706 USA
ram@math.wisc.edu

Last updates: 20 June 2010

Representations of the groups G H,H/K,n

The irreducible representations of the group G H,1,n ca be derived from Clifford theory or via the tower 1 G 1 2 G1 G 3 2 G2 G 5 2 G3 , where Gn = G H,1,n = Hn Sn   and   G n+ 1 2 = G H,1,n × G H,1,1 , so that G n+ 1 2 is a Levi "subgroup" of G n+1 . The tower of G^ has

  1. vertices on level n: mutlipartitions λ= λ α α H^ with n boxes total,
  2. vertices on level n+ 1 2 : pairs λ α , where λ G^ n ,α H^ .
  3. edges from level n to level n+ 1 2 : λ λ α for each α H^ .
  4. edges from level n+ 1 2 to level n: μ α ν if ν is obtained from μ by adding a box to μ α .

For each 0mr-1 the elements tim ,1in, form a conjugacy class in G r1n and the elements tim tj -m ij ,1i<jn,0mr-1, form another conjugacy class in G r1n . Thus the elements zs m = i=1 n tim ,0mn-1,  and   zl = 1 r m=0 r-1 1i<jn tim tj -m ij , are elements of Z G r1n . So zs m and zl must act by a constant on any irreducible representation Sλ of G r1n . Define x1 =0, xk = 1i<jk
0lr-1 til tj -l ij - 1i<jk-1
0lr-1
til tj -l ij
= 1 r 1i<k
0lr-1
til tk -l ik ,for  2kn and yk = i=1 k ti - i=1 k -1 ti = tk ,for  1kn.

The elements x1 ,, xn and y1,, yn all commute with each other and the action of these elements on the irreducible representation Sλ of G r1n is given by yk vT =s T k vT   and   xk vT =c T k vT , for all standard tableaux T.

Proof.

The proof is via induction on k using the relations xk = sk x k-1 sk + l=0 r-1 y k-1 l sk y k-1 -l   and   yk = sk y k-1 sk . The base cases x1 vT =0=c T 1 vT   and   y1 vT =s T 1 vT are immediate from the defintions. Then yk vT = sk y k-1 sk = sk s T k-1 sk TT + 1+ sk TT s T k v sk T = sk s T k sk vT + s T k-1 -s T k sk TT vT = s T k vT +0=s T k vT , and xk vT = sk x k-1 sk + 1 r l=0 r-1 sk y k-1 -l ykl vT = sk c T k-1 sk TT vT +c T k 1+ sk TT v sk T + 1 r l=0 r-1 s T k -l s T k l vT = sk c T k sk vT + c T k-1 -c T k sk TT vT + 1 r l=0 r-1 s T k -1 s T k l vT = sk c T k sk vT + -1 +1 vT , if s T k =s T k-1 , sk c T k sk vT + 0 +0 vT , if s T k s T k-1 , = c T k vT .

Define an action of H on H^ by hα= χh α, and extend this to an action of H on the simple G H,1,n modules by mP vT m hP v hT .

  1. The simple G H,H/K,n modules are indexed by pairs λ_ μ where λ_ K\ G^ n ,μ K^ n , where Kλ is the stabiliser of λ in K.
  2. The simple G H,H/K,n module, for any fixed representative λ of the coset λ_ , G K,n λ_ μ = pμ Gnλ ,where   pμ = k Kλ χμ k -1 k, is the minimal idempotent of Kλ corresponding to the module Kλμ .
  3. As a G H,H/K,n Kλ bimodule Gλ = μ K^ λ Gn λμ Kλμ .

References [PLACEHOLDER]

[BG] A. Braverman and D. Gaitsgory, Crystals via the affine Grassmanian, Duke Math. J. 107 no. 3, (2001), 561-575; arXiv:math/9909077v2, MR1828302 (2002e:20083)

page history