Data for quiver Hecke algebras

Data for quiver Hecke algebras

Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville, VIC 3010 Australia
aram@unimelb.edu.au
and

Department of Mathematics
University of Wisconsin, Madison
Madison, WI 53706 USA
ram@math.wisc.edu

Last updates: 10 April 2010

Data for quiver Hecke algebras

  1. is the free algebra generated by f i ,i I . Q + = i I 0 αi with deg f i 1 f i d = α i 1 + + α i d . The symmetric group S d = σ1 σ d-1 acts on I d = words of length   d = u I * | l u =d (by rearrangements) with orbit decomposition I d = α Q + ,ht α =d I α where I α = u I* | deg u =α .
  2. Fix a symmetric bilinear form , : Q + × Q + given by values αi αj so that A= αi αj with αi = 2 αi αi αi is a Cartan matrix for a symmetrisable Kac-Moody Lie algebra.
  3. Γ is the graph with vertices I and edges i j j if αi αj 0 . Fix an orientation ε ij where ε ij =+1 if i j j and ε ij =-1 if i j j and set Q ij uv = 0,  if  i=j 1,  if  ij  and  αi αj =0 ε i j v - α j α i - u - α i α j   if  ij  and   α i αj 0 .

Quiver Hecke algebras α ,α Q +

α is the associative -graded algebra given by generators e u , x 1 e u ,, x d e u , τ 1 e u ,, τ d-1 e u ,u I α with degrees deg e u =0,deg x i e u = u i u i ,deg τi eu =- u i u i +1 where u i is the i th letter in u, and relations e u e v = δ uv , u I α e u =1, x i x j = x j x i , x i e u = e u x i , τ i e u = e σi u τ i , τ i τ j = τ j τ i ,ifii,i±1 τ i 2 e u = Q u i , u i+1 x i x i+1 e u , τ i+1 τi τ i+1 - τ i+1 τ i τ i+1 e u = 1 x i+2 - x i Q u i+2 , u i+1 x i+2 x i+1 - Q u i+1 , u i x i+1 x i ,if   u i = u i+2 0,if   u i u i+2 , τ i x j e u = x σ i j τ i e u - ε ij e u , if   u i = u i+1 , x σ i j τ i e u , if   u i u i+1 .

Note: x i = u I α x i e u ,and τ i = u I α τ i e u .

Structure of α

For each σ S α fix a reduced word σ= σ i 1 σ i l and set τσ = τ i 1 τ i l .

(Khovanov-Lauda Rouquier)
α has basis x 1 n 1 x d n d τσ e u | u I α ,σ S d , n 1 ,, n d 0 . If α Q + and β Q + then I α+β = σ S k+l S k × S l σ I α . I β and there is a homomorphism α β α+β eu e v x i e uv eu e v x i e uv eu x j e v x j+k e uv τ i eu e v τ i e uv eu τ j e v τ j+k e uv where k=ht α .

(Khovanov-Lauda)
α+β is a free (right) α β -module with basis τ σ 1 αβ | σ S k+l S k × S l with 1 αβ = α I α ,v I β e uv . For M α -mod and N β -mod, M-N= Ind α β α+β MN .

Graded characters

α -mod is the category of finite dimensional -graded α -modules: M= i M i with α j M i M i+j , where α j = elements of degree  j  in   α . M= i u I α M u i with M u i = e u M i . The graded character of M is gch M = i u I α dim M u i q i f u . Then gch M·N =gch M ·gch N where the right hand side is , -shuffle product.

Let K α -mod be the Grothendieck group of α -mod. α Q + K α -mod U - M gch M L g b g * is an algebra isomorphism, where b g * | gG is the dual canonical basis of U - , L g | gG are the simple α -modules in α -mod. α Q + K α -mod U - M gch M L g b g * Δ g E g * where L g ,gG are the simple α -modules, if lL then Δ l =L l and Δ g =Δ l 1 ··Δ l k if g= l 1 lk with l 1 ,, l k GL and l 1 l k .

Δ g has uniue simple quotient L g .

Projective α -modules

Proj   α is the category of finitely generated -generated projective α -modules. Let P i be the unique indecomposable projective αi -module: P i =span x 1 n e α1 | n 0 x 1 . For PProjα and QProj β , define PQ= Ind α β α+β PQ . Let K Proj α be the Grothendieck group of Proj α .

(Khovanov-Lauda, Rouquier)

U - α Q + K Proj α P i P i is an algebra isomorphism. Then b g P g where b g | gG is the canonical basis of U - and P g | gG are the indecomposables in Proj α .

References [PLACEHOLDER]

[BG] A. Braverman and D. Gaitsgory, Crystals via the affine Grassmanian, Duke Math. J. 107 no. 3, (2001), 561-575; arXiv:math/9909077v2, MR1828302 (2002e:20083)

page history