error on line 124 at column 69: Entity 'nbsp' not defined
error on line 131 at column 73: Entity 'nbsp' not defined
error on line 138 at column 67: Entity 'nbsp' not defined
error on line 145 at column 71: Entity 'nbsp' not defined
error on line 168 at column 21: Entity 'nbsp' not defined
error on line 173 at column 39: Entity 'nbsp' not defined
error on line 174 at column 45: Entity 'nbsp' not defined
error on line 216 at column 11: Entity 'Fscr' not defined
error on line 236 at column 10: Entity 'sum' not defined
error on line 238 at column 21: Entity 'isin' not defined
error on line 244 at column 11: Entity 'Zopf' not defined
error on line 245 at column 9: Entity 'ge' not defined
error on line 253 at column 12: Entity 'alpha' not defined
error on line 272 at column 13: Entity 'hellip' not defined
error on line 284 at column 12: Entity 'alpha' not defined
error on line 293 at column 13: Entity 'hellip' not defined
error on line 296 at column 12: Entity 'alpha' not defined
error on line 313 at column 32: Entity 'lang' not defined
error on line 315 at column 12: Entity 'sigma' not defined
error on line 318 at column 20: Entity 'hellip' not defined
error on line 320 at column 12: Entity 'sigma' not defined
error on line 342 at column 32: Entity 'nbsp' not defined
error on line 348 at column 22: Entity 'isin' not defined
error on line 370 at column 13: Entity 'sqcup' not defined
error on line 372 at column 28: Entity 'isin' not defined
Below is a rendering of the page up to the first error.
Data for quiver Hecke algebras
Data for quiver Hecke algebras
Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville, VIC 3010 Australia
aram@unimelb.edu.au
and
Department of Mathematics
University of Wisconsin, Madison
Madison, WI 53706 USA
ram@math.wisc.edu
Last updates: 10 April 2010
Data for quiver Hecke algebras
is the free algebra generated by fi,iI.Q+=iI0idegfi1fid=i1++id.
The symmetric group Sd=1d-1
acts on Id=words of length d=uI*|lu=d
(by rearrangements) with orbit decomposition Id=Q+,ht=dII=uI*|degu=.
Fix a symmetric bilinear form ,:Q+Q+
given by values ij
so that A=iji=2iii
is a Cartan matrix for a symmetrisable Kac-Moody Lie algebra.
is the graph with vertices I
and edges
ij
if ij0.
Fix an orientation
ij where ij=+1 if ij
and
ij=-1 if ij
and set Qijuv=0,i=j1,ijij=0ijv-ji-u-ijijij0.
Quiver Hecke algebras ,Q+
is the associative -graded algebra given by generators eu,x1eu,,xdeu,1eu,,d-1eu,uI with degrees degeu=0,degxieu=uiui,degieu=-uiui+1 where ui is the ith letter in u, and relations euev=uv,uIeu=1,xixj=xjxi,xieu=euxi,ieu=eiui,ij=ji,ifii,i1i2eu=Qui,ui+1xixi+1eu,i+1ii+1-i+1ii+1eu=1xi+2-xiQui+2,ui+1xi+2xi+1-Qui+1,uixi+1xi,if ui=ui+20,if uiui+2,ixjeu=xijieu-ijeu,if ui=ui+1,xijieu,if uiui+1.
Note:xi=uIxieu,andi=uIieu.
Structure of
For each S fix a reduced word =i1il and set =i1il.
(Khovanov-Lauda Rouquier) has basis x1n1xdndeu|uI,Sd,n1,,nd0. If Q+ and Q+ then I+=Sk+lSkSlI.I and there is a homomorphism +euevxieuveuevxieuveuxjevxj+keuvieuevieuveujevj+keuv where k=ht.
(Khovanov-Lauda) + is a free (right) -module with basis 1|Sk+lSkSl with 1=I,vIeuv. For M-mod and N-mod, M-N=Ind+MN.
Graded characters
-mod is the category of finite dimensional -graded -modules:
M=iMiwithjMiMi+j, where j=elements of degree j.M=iuIMuiwithMui=euMi. The graded character of M is gchM=iuIdimMuiqifu. Then gchMN=gchMgchN where the right hand side is ,-shuffle product.
Let K-mod be the Grothendieck group of -mod.Q+K-modU-MgchMLgbg* is an algebra isomorphism, where bg*|gG is the dual canonical basis of U-,Lg|gG are the simple -modules in -mod. Q+K-modU-MgchMLgbg*gEg* where Lg,gG are the simple -modules, if lL then l=Ll and g=l1lk if g=l1lk with l1,,lkGL and l1lk.
g has uniue simple quotient Lg.
Projective -modules
Proj is the category of finitely generated -generated projective -modules. Let Pi be the unique indecomposable projective i-module: Pi=spanx1ne1|n0x1. For PProj and QProj, define PQ=Ind+PQ. Let KProj be the Grothendieck group of Proj.
(Khovanov-Lauda, Rouquier)
U-Q+KProjPiPi is an algebra isomorphism. Then bgPg where bg|gG is the canonical basis of U- and Pg|gG are the indecomposables in Proj.