Problem Set - Trigonometry

Problem Set - Trigonometry

Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville, VIC 3010 Australia
aram@unimelb.edu.au

and

Department of Mathematics
University of Wisconsin, Madison
Madison, WI 53706 USA
ram@math.wisc.edu

Last updates: 18 February 2010

Angles

What is π and where did it come from?
Explain how to measure angles in radians, in degrees and how to convert between them.
What is the connection between measuring angles in radians and measuring distance?
What is the circumference of a circle of radius r ? How do you know?
What is the length of an arc of angle θ on the boundary of a circle of radius r ? How do you know?
What is the area of a circle of radius r ? How do you know?
What is the area of a sector of angle θ in a circle of radius r ? How do you know?
Using angles, what is sin x ?
Using angles, what is cos x ?
Using angles, show that sin - x = - sin x .
Using angles, show that cos - x = cos x .
Using angles, show that sin 2 x + cos 2 x = 1 .
Using angles, show that sin x + y = sin x cos y + cos x sin y .
Using angles, show that cos x + y = cos x cos y - sin x sin y .

Computing trigonometric functions

Explain how to derive sin π 6 cos π 6 tan π 6 cot π 6 sec π 6 and csc π 6 in radical form.
Explain how to derive sin π 3 cos π 3 tan π 3 cot π 3 sec π 3 and csc π 3 in radical form.
Explain how to derive sin π 4 cos π 4 tan π 4 cot π 4 sec π 4 and csc π 4 in radical form.
Explain how to derive sin π 2 cos π 2 tan π 2 cot π 2 sec π 2 and csc π 2 in radical form.
Explain how to derive sin 0 cos 0 tan 0 cot 0 sec 0 and csc 0 in radical form.
Explain how to derive sin 3 π 4 cos 3 π 4 tan 3 π 4 cot 3 π 4 sec 3 π 4 and csc 3 π 4 in radical form.
Explain how to derive sin - 2 π 3 cos - 2 π 3 tan - 2 π 3 cot - 2 π 3 sec - 2 π 3 and csc - 2 π 3 in radical form.
Compute sin π 6 + cos π 6 in radical form.
Compute sin π 6 cos π 6 in radical form.
Compute tan π 6 cot π 6 in radical form.

Trigonometric function identities

Verify the identity sec A - 1 sec A + 1 + cos A - 1 cos A + 1 = 0 .
Verify the identity sin V 1 + cot 2 V = csc V .
Verify the identity sin π / 2 - w cos π / 2 - w = cot w .
Verify the identity sec π / 2 - z = 1 sin z .
Verify the identity 1 + tan 2 π / 2 - x = 1 cos 2 π / 2 - x .
Verify the identity sin A csc A + cos A sec A = 1 .
Verify the identity sec B cos B - tan B cot B = 0 .
Verify the identity 1 csc 2 w + sec 2 w + 1 sec 2 w = 2 + sec 2 w csc 2 w .
Verify the identity sec 4 V - sec 2 V = 1 cot 4 V + 1 cot 2 V .
Verify the identity sin 4 x + cos 2 x = cos 4 x + sin 2 x .
Verify the identity tan 3 α = 3 tan α - tan 3 α 1 - 3 tan 2 α .
Verify the identity cot α / 2 = sin α 1 - cos α .
Verify the identity cos π / 6 - x + cos π / 6 + x = 3 cos x .
Verify the identity sin α + β sin α - β = sin 2 α - sin 2 β .
Verify the identity sin π / 3 - x + sin π / 3 + x = 3 cos x .
Verify the identity cos π / 4 - x - cos π / 4 + x = 2 sin x .
Verify the identity 2 sin α cos β = sin α + β + sin α - β .
Verify the identity 2 sin α sin β = cos α - β - cos α + β .

Fun trigonometric functions

Verify the identity cos 2 θ = 2 sin π / 4 + θ sin π / 4 - θ
Verify the identity sin 2 A 2 = tan A 1 + tan 2 A .
Verify the identity cot x / 2 = 1 + cos x sin x .
Verify the identity sin 2 B cot B + tan B = 2 .
Verify the identity 1 - tan 2 θ 1 + tan 2 θ = cos 2 θ .
Verify the identity 1 + cos 2 A = 2 1 + tan 2 A .
Verify the identity tan 2 x tan x + 2 = tan 2 x tan x .
Verify the identity csc A sec A = 2 csc 2 A .
Verify the identity cot x = sin 2 x 1 - cos 2 x .
Verify the identity 1 - sin A = sin A 2 - cos A 2 2 .
Verify the identity cos 4 A = 2 cos 2 A + cos 2 2 A + 1 4 .
Verify the identity sin A + sin B sin A - cos A = tan A + B 2 tan A - B 2 .
Verify the identity sin α + sin 3 α cos α + cos 3 α = tan 2 α .
Verify the identity cos 2 A 1 + sin 2 A = cot A - 1 cot A + 1 .
Verify the identity cos A + sin A cos A - sin A = 1 + sin 2 A cos 2 A .
Verify the identity cot α - cot β = sin β - α sin α sin β .
Verify the identity tan θ csc θ cos θ = 1 .
Verify the identity cos 2 θ = cot 2 θ 1 + cot 2 θ .
Verify the identity 1 - sin A 1 + sin A = sec A - tan A 2 .
Verify the identity tan A - cot A 2 + 4 = sec 2 A + csc 2 A .
Verify the identity cos B cos A + B + sin B sin A + B = cos B .
Verify the identity tan A - sin A sec A = sin 3 A 1 + cos A .
Verify the identity 2 tan 2 A 1 + tan 2 A = 1 - cos 2 A .
Verify the identity tan 2 A = tan A + tan A cos 2 A .
Verify the identity sin 2 A = 2 tan A 1 + tan 2 A .
Verify the identity 4 sin A 1 - sin 2 A = 1 + sin A 1 - sin A - 1 - sin A 1 + sin A .
Verify the identity tan A + sin A = csc A + cot A csc A cot A .

Inverse trigonometric function identities

Verify the identity cos tan -1 x = 1 1 + x 2 .
Verify the identity sin tan -1 x = x 1 + x 2 .
Verify the identity sin cos -1 x = 1 - x 2 .
Verify the identity tan cos -1 x = 1 - x 2 x .
Verify the identity cos sin -1 x = 1 - x 2 .
Verify the identity tan cot -1 x = 1 x .
Verify the identity cot cot -1 2 = 2 .
Verify the identity sin cot -1 x = 1 1 + x 2 .
Verify the identity cos cot -1 x = x 1 + x 2 .
Verify the identity sin -1 - x = - sin -1 x .
Verify the identity tan -1 - x = - tan -1 x .
Verify the identity tan -1 x = cot -1 1 / x .
Verify the identity tan -1 x = sin -1 x 1 + x 2 .
Verify the identity sin -1 x 1 + x 2 = cos -1 x 1 + x 2 .

Basic derivatives

What is d d x ?
Explain why d 1 d x = 0 .
Explain why d a d x = 0 if a is a number.
Explain why d x d x = 1 .
Explain why d x 2 d x = 2 x .
Explain why d x 3 d x = 3 x 2 .
Explain why d x -1 d x = - x -2 .
Explain why d x -2 d x = -2 x -3 .
Explain why d x -3 d x = -3 x -4 .
Explain why d 3 x 2 + 2 x -1 d x = - 6 x + 2 3 x 2 + 2 x 2 .
Explain why d x 1 / 2 d x = 1 2 x - 1 / 2 .
Explain why d x 1 / 3 d x = 1 3 x - 2 / 3 .
Explain why d x 3 / 5 d x = 3 5 x - 2 / 5 .
Explain why d x n d x = n x n - 1 , for all positive integers n .
Explain why d x n d x = n x n - 1 , for n = 0 .
Explain why d x n d x = n x n - 1 , for all negative integers n .
Explain why d x m / n d x = m n x m / n - 1 for all integers m and n , with n 0 .

References [PLACEHOLDER]

[BG] A. Braverman and D. Gaitsgory, Crystals via the affine Grassmanian, Duke Math. J. 107 no. 3, (2001), 561-575; arXiv:math/9909077v2, MR1828302 (2002e:20083)

page history