On Ub™ for sl

1. Two dimensional bialgebras

1.1 Let 9 be a two dimensional vector space over a field k. Then any linear map [,]: § ® 8 — @ which satisfies
[x,y] = —[y,z] for all x,y € @ satisfies the Jacobi identity. Similarly, any map 0:9 — g A @ satisfies the
co-Jacobi identity. Let x1,22 be a basis of g and suppose that the bracket [,] and the cobracket § are given
by
[€1,22] = 11 + @, and
6(.1‘1) = ﬂl(l‘l A $2) and 5(&32) = ﬂQ(Z‘l A l‘g).

If we change basis so that

21 = Paxy1 — Bre,

Zg = 121 + a2,
then we get

[21, 22] = (Bacxg + Brav1)z2, and
0(z1) =0 and d(z2) = (a2f2 + a181)x1 A2 = 21 A 22,

where we are assuming that asfs + @181 # 0. One can also perform a change of basis in the case that
asfs + a1 81 = 0 so that we may assume that g has a basis H, X and that [,] and ¢ are given by

[H,X]=aX, and
0(H)=0 and d(X)=pF(XAH).

1.2 Let us check the 1-cocycle condition.
O([H, X]) =6(aX)=aBX NH.
On the other hand
(ad®?H)0(X) — (ad®?X)6(H) = (ad®**H)B(X @ H — H ® X)

=p[(H,X]® X -[H,H®X+X®[H,H - H®[H, X))
=0aX®H—-0+0—-aH®X)
=afX NH.

Thus the 1-cocycle condition is automatically satisfied. So 8 with [,] and ¢ is a Lie bialgebra.

1.3 The matrices of the representation ad, with respect to the basis H, X such that [H, X] = aX are given
by
0 0
ad H = < 0 a)

0 0
adX-(_a 0).

If we define an inner product on g by (z,y) = tr((ad x)(ad y)) then we have
(H,H) = o?, (H,X) =0, (X,X)=0.

1.4 If we assume that (,) is an invariant inner product on g then the equations

(X, X) = ([H, X], X) = —(X, [H, X]) = —a(X, X),

a(H,X) = (H,[H, X]) = =([H, H], X) =0,
imply that if & # 0 then (X, X) = 0 and (H, X) = 0. Thus, if o # 0 then, up to normalization, the inner
product given in (1.3) is the only invariant scalar product on §.

1.5 Since H acts diagonally on g and on g ® ¢ via ad and ad®? respectively it follows that the only possible
invariant in §® @ is H ® H. Since (ad*?*X)(H ® H) = —a(X ® H + H® X), H ® H is not invariant. Thus
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there are no invariants in 9 ® g. It follows that the cobracket ¢ is not a coboundary and that there is no “r
matrix giving a bialgebra structure on g.



2. Quantization of g

2.1 First let us begin with the Lie algebra h = kH, which is one dimensional and abelian, i.e. [H, H] = 0.
The enveloping algebra 6 is isomorphic to k[H] as an algebra. Then let us try to create a quantization
of {h with the same multiplication. More precisely we want to find a coproduct Ay, on the algebra $Ah[[h]]
where the multiplication is the k[[h]] linear extension of the ordinary multiplication in i to the completion
$Ih[[h]]. The condition is that Aj must be coassociative and an algebra homomorphism. Furthermore we

must have that
Ap(Hymodh=H®1+1® H.

In other words, as an algebra the quantization A is a bialgebra over k[[h]], complete in the h-adic topology,
and generated by a single element H.

2.2 There is a natural grading on ilh given by the degree as a polynomial in H over k. Similarly there is a
natural grading on Ub[[h]] such that deg(H) = 1. This induces a grading on Uh[[h]] ® Uh[[h]]. We would like
the coproduct Ay, on $Uh[[h]] to preserve this grading. This assumption forces us to have

AH)=H® f+9®H=f(H®1)+g(l® H)

where f, g € k[[h]]. The coassociative condition then reads

(dRANARLH)=f(H1®1)+g9g(1®H® f)+9(1®g® H)

(

fH121)+ fgloH®1) +¢*(1®1® H)
(
2

=(An@id)Ap(H) = f(H@ fo1)+ f(goH®1)+9(1©10 H)

FPH211)+ fg@H®1)+g9(1®1e H).

Thus we must have that f2 = f and g> = g. The condition that Ap(H) mod h = H® 1+ 1 ® H forces
fmodh = gmodh = 1. Thus f and g are invertible elements of k[[h]]. It follows then that f = g = 1.
Thus the only quantization of L which preserves grading is the trivial one.

2.3 Now let us construct a quantization of the two dimensional Lie bialgebra g with basis H, X such that

[H,X] =X, and
§(H)=0, and §X)=pXAH.

There is a natural grading on g given by putting deg(H) = 0 and deg(X) = 1. Let A be the associative
algebra over k[[h]], complete in the h-adic topology, and generated by H and X with relations

[H,X]=HX — XH = oX.

We want to construct a coproduct Ay, on A such that 4Uh[[h]] as given above is a subbialgebra of A. This
condition, in combination with a condition requiring that the coproduct Ay preserve the grading from A to
A ® A allows us to make the assumptions that

ApH)=H®1+1®H, and
AX)=X@f+g®X,

where L
H*
f:Z T and
i>0
g
9=> e
j=0

for some elements f;, g; € k[[R]].



2.4 Since Ap(H) = A(H), by linearity, Ap(f) = A(f) and Ap(g) = A(g). The coassociativity condition

gives that
(1d @ AR)AR(X) =X @ A(f) + g ® Ap(X)

=XQA(f)+9gRXf+9g9x X
= (Ah@’td)Ah<X) :Ah(X)®f+A(g>®X
=XQRff+90Xh+Alg9) ® X.

It follows that 6(f) = f ® f and A(g) = g ® g. We have

A =Y Teat)

k>0

i,5>0

=fof=Y %H@Hﬂ

4,j>0
It follows that f;f; = fiy; for all 7, j. In particular,
o= fiv1ir.1=f1', and
3 = fo.
2.5 The deformation A must satisfy (Ap(X) mod h) = A(X). This forces

fo (mod h) =1, and
(f1 mod h) = (g1 mod h) = 0.

So fy is invertible in k[[h]]. It follows that fo = 1 and that

krrk
r= T o), and

k
k>0
g =exp(g1 H).

2.6 The quantization A must satisfy

M mod h = §(a mod h),

for all @ € A. This forces that

hil(Ah(X) — O’A;L(X)) (mod h)
=h Y (X @exp(fiH)+ exp(g1H) ® X —exp(f1H) ® X — X @ exp(g1H)) (mod h)
=h Y X @ (exp(fLH) — exp(giH)) + (exp(g1 H) — exp(f1H)) ® X) (mod h).

Since (f; mod h) = (g1 mod h) = 0 this is equal to
BXANH)=06(X)=h"YAn(X) —0Au(X)) (modh)=X® (fi —g1 mod h)H + (g1 — f1 mod h)H @ X.
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It follows that ((fi — g1) mod h?) = Bh.

2.7 Since we know that Ap(exp(fi1H)) = Ap(f) = f® f = exp(fL1 H) @ exp(f1 H) and that Ay is an algebra
homomorphism we have that

Ap(Xexp(—(f1 +91)H/2))
= Xexp(—(f1 +g1)H/2) ® exp((f1 — g1)H/2) + exp(—(f1 — 91)H/2) @ Xexp(—(f1 +g1)H/2), and
Ap(Xexrp(—g1H/2)) = Xexp(—g1H/2) @ exp((f1 — 91)H/2) + exp(0) ® Xexp(—g1H/2).

Therefore, by a change of variables, we may choose f € k[[h]] such that f mod h? = 8h and generators X
and H of A such that Ay, is given by

An(X) = X @ cap(fH) + exp(~fH) @ X, or
Ap(X)=X@exp(fH)+1® X.

2.8 Suppose that f € k[[h]] and that f mod h = 0 and that f mod h? = 8 # 0. Then we have that
f=Bh+Bah®+ B3h® + -,

where §; € k. Since 8 # 0 we have
f = Bh(1+57hQ),

where @ is some element of k[[h]]. Since 1+ 371Q is invertible in k[[R]] it follows that we may replace f by
Bh after a change of variable. Thus we may assume that the quantization is of the form

Ap(X) = X @ exp(BhH) + exp(—phH) ® X, or
Ap(X) =X @ exp(BhH) +1® X.
2.9 Define an element K € A by the equation
K = exp(BhH).
The element K is invertible with inverse K~ = exp(—BhH). Using the relation [H, X] = aX we have that
HYX = "' HX - XH+ XH)=H" " YaX + XH) = H" ' X(a + H).
By induction it follows that H*X = X (a + H)*. Thus

kpk o7k
KX =Y BhHX hlf X
k>0 ’
BERE (o + H)F
= xe2 =/
]%;) k!
= Xexp(Bh(a+ H))

= exp(afh) XK.

It follows that
KXK' =exp(aBh)X.

2.10 We want to define a Hopf algebra structure on A. Let us assume that Ay is given by A,(H) =
1®H+H®1and Ap(X) =X ® K+ K~! ® X. Then the counit condition gives that

H=m(id®e)A(H) = He(1) + le(H),
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forcing e(H) = 0. It follows that £(K) = 1. Using the counit condition again we have that
X=m(id®e)A(X)=Xe(K)+ K 'e(X) =X -1+ K 'e(X).
It follows that ¢(X) = 0. The antipode condition gives that
0=c(H)=HS(1)+1-S(H) = H + S(H).
Thus S(H) = —H. We get that S(K) = K~!. Using the antipode condition again gives
0=e(X)=m(id® S)A(X) = XS(K)+ K 'S(X)= XK' + K~'5(X).
Thus S(X) = —-KXK~! = —exp(afh)X. So the Hopf structure on A is given by

e(H) =0, e(K) =1, e(X)=0
S(H)=—H, S(K)= K1, S(X) = —exp(aph)X.

If we assume that the coproduct is of the form A, (X) = X ® K + 1 ® K then similar calculations will show
that the counit and the antipode are given by

e(H) =0, e(K)=1 e(X)=0
S(H)=-H, S(K)=K', SX)=-XK



3. The double D(g) =9®g* of g

3.1 Let us compute the double of (g,0). Let H*,Y € g* be the dual basis to H, X. Then
((H",Y],X) = (H"®Y,6(X))
=B(H" Y, X®H-H®X)
= —ﬁ.

Since 6(H) = 0, ([H*,Y],H) = 0. Thus we get that [H*,Y] = —fX*. The remainder of the brackets are
computed by using the invariance of the inner product, giving

[HvX}:O‘Xa [H’Y]:—QY; [HaH*]:Oa
[H*, X] = BX, [H*,Y] = -pY,
[X,Y] = BH + oH*,

as the multiplication table for D(g8) = g ® g*.
3.2 Make the following change of basis,

X=X, Y=Y, K =(aB) (aH*+pH), Ko=(af) ' (aH*—pH).
Then [9® 8%, Ko] =0 and
[KlaX]:2X7 [K17Y]2_2K [X?Y]:aﬁKl

3.3 Since ¢ has basis {X, H} and 9* has dual basis {Y, H*}, let
r=XY+H®H".
Then

6(X) = (ad®X)(r) = B(X A H),
O(H) = (ad®* H)(r) = 0,

O(H") = (ad®*H")(r) = 0,
oY) = (ad®Y)(r) = a(Y A H),

gives a Lie bialgebra structure on D(9).

3.4 We have that
H= %(Kl ~Ky), and H* = g(K1 + K>).

Substituting gives

T:X®Y+%(K1—K2)®(K1+K2)

Set Ky =0, i.e., project modulo the ideal spanned by K, to get

F:X®Y+%B(K1®K1).

Then, one has that 7 determines a Lie bialgebra structure on D(8)/K> which has basis {X,Y] K1}, bracket
given by
[K1,X]|=2X, [K;,Y]=-2Y, [X,Y]=aBK;,
and cobracket given by
BX) = (2d® ) () = 2
S(H) = (ad™*H)(7) = 0,
of

(V) = (ad®?Y)(F) = 7(Y AH).

(X A H),
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