
On Ub+ for sl2

1. Two dimensional bialgebras

1.1 Let g be a two dimensional vector space over a field k. Then any linear map [, ]: g⊗ g→ g which satisfies
[x, y] = −[y, x] for all x, y ∈ g satisfies the Jacobi identity. Similarly, any map δ: g → g∧ g satisfies the
co-Jacobi identity. Let x1, x2 be a basis of g and suppose that the bracket [, ] and the cobracket δ are given
by

[x1, x2] = α1x1 + α2x2, and

δ(x1) = β1(x1 ∧ x2) and δ(x2) = β2(x1 ∧ x2).

If we change basis so that
z1 = β2x1 − β1x2,
z2 = α1x1 + α2x2,

then we get

[z1, z2] = (β2α2 + β1α1)z2, and

δ(z1) = 0 and δ(z2) = (α2β2 + α1β1)x1 ∧ x2 = z1 ∧ z2,
where we are assuming that α2β2 + α1β1 6= 0. One can also perform a change of basis in the case that
α2β2 + α1β1 = 0 so that we may assume that g has a basis H,X and that [, ] and δ are given by

[H,X] = αX, and

δ(H) = 0 and δ(X) = β(X ∧H).

1.2 Let us check the 1-cocycle condition.

δ([H,X]) = δ(αX) = αβX ∧H.
On the other hand

(ad⊗2H)δ(X)− (ad⊗2X)δ(H) = (ad⊗2H)β(X ⊗H −H ⊗X)

= β([H,X]⊗X − [H,H]⊗X +X ⊗ [H,H]−H ⊗ [H,X])

= β(αX ⊗H − 0 + 0− αH ⊗X)

= αβX ∧H.
Thus the 1-cocycle condition is automatically satisfied. So g with [, ] and δ is a Lie bialgebra.

1.3 The matrices of the representation ad, with respect to the basis H,X such that [H,X] = αX are given
by

ad H =

(
0 0
0 α

)
ad X =

(
0 0
−α 0

)
.

If we define an inner product on g by 〈x, y〉 = tr((ad x)(ad y)) then we have

〈H,H〉 = α2, 〈H,X〉 = 0, 〈X,X〉 = 0.

1.4 If we assume that 〈, 〉 is an invariant inner product on g then the equations

α〈X,X〉 = 〈[H,X], X〉 = −〈X, [H,X]〉 = −α〈X,X〉,
α〈H,X〉 = 〈H, [H,X]〉 = −〈[H,H], X〉 = 0,

imply that if α 6= 0 then 〈X,X〉 = 0 and 〈H,X〉 = 0. Thus, if α 6= 0 then, up to normalization, the inner
product given in (1.3) is the only invariant scalar product on g.

1.5 Since H acts diagonally on g and on g⊗ g via ad and ad⊗2 respectively it follows that the only possible
invariant in g⊗ g is H ⊗H. Since (ad⊗2X)(H ⊗H) = −α(X ⊗H +H ⊗X), H ⊗H is not invariant. Thus
there are no invariants in g⊗ g. It follows that the cobracket δ is not a coboundary and that there is no “r”
matrix giving a bialgebra structure on g.
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2. Quantization of Ug

2.1 First let us begin with the Lie algebra h = kH, which is one dimensional and abelian, i.e. [H,H] = 0.
The enveloping algebra Uh is isomorphic to k[H] as an algebra. Then let us try to create a quantization
of Uh with the same multiplication. More precisely we want to find a coproduct ∆h on the algebra Uh[[h]]
where the multiplication is the k[[h]] linear extension of the ordinary multiplication in Uh to the completion
Uh[[h]]. The condition is that ∆h must be coassociative and an algebra homomorphism. Furthermore we
must have that

∆h(H) mod h = H ⊗ 1 + 1⊗H.

In other words, as an algebra the quantization A is a bialgebra over k[[h]], complete in the h-adic topology,
and generated by a single element H.

2.2 There is a natural grading on Uh given by the degree as a polynomial in H over k. Similarly there is a
natural grading on Uh[[h]] such that deg(H) = 1. This induces a grading on Uh[[h]]⊗Uh[[h]]. We would like
the coproduct ∆h on Uh[[h]] to preserve this grading. This assumption forces us to have

∆h(H) = H ⊗ f + g ⊗H = f(H ⊗ 1) + g(1⊗H)

where f, g ∈ k[[h]]. The coassociative condition then reads

(id⊗∆h)∆h(H) = f(H ⊗ 1⊗ 1) + g(1⊗H ⊗ f) + g(1⊗ g ⊗H)

= f(H ⊗ 1⊗ 1) + fg(1⊗H ⊗ 1) + g2(1⊗ 1⊗H)

= (∆h ⊗ id)∆h(H) = f(H ⊗ f ⊗ 1) + f(g ⊗H ⊗ 1) + g(1⊗ 1⊗H)

= f2(H ⊗ 1⊗ 1) + fg(⊗H ⊗ 1) + g(1⊗ 1⊗H).

Thus we must have that f2 = f and g2 = g. The condition that ∆h(H) mod h = H ⊗ 1 + 1 ⊗ H forces
f mod h = g mod h = 1. Thus f and g are invertible elements of k[[h]]. It follows then that f = g = 1.
Thus the only quantization of Uh which preserves grading is the trivial one.

2.3 Now let us construct a quantization of the two dimensional Lie bialgebra g with basis H,X such that

[H,X] = βX, and

δ(H) = 0, and δ(X) = βX ∧H.

There is a natural grading on Ug given by putting deg(H) = 0 and deg(X) = 1. Let A be the associative
algebra over k[[h]], complete in the h-adic topology, and generated by H and X with relations

[H,X] = HX −XH = αX.

We want to construct a coproduct ∆h on A such that Uh[[h]] as given above is a subbialgebra of A. This
condition, in combination with a condition requiring that the coproduct ∆h preserve the grading from A to
A⊗A allows us to make the assumptions that

∆h(H) = H ⊗ 1 + 1⊗H, and

∆h(X) = X ⊗ f + g ⊗X,

where

f =
∑
i≥0

fiH
i

i!
, and

g =
∑
j≥0

gjH
j

j!
,

for some elements fi, gj ∈ k[[h]].
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2.4 Since ∆h(H) = ∆(H), by linearity, ∆h(f) = ∆(f) and ∆h(g) = ∆(g). The coassociativity condition
gives that

(id⊗∆h)∆h(X) = X ⊗∆(f) + g ⊗∆h(X)

= X ⊗∆(f) + g ⊗X ⊗ f + g ⊗ g ⊗X
= (∆h ⊗ id)∆h(X) = ∆h(X)⊗ f + ∆(g)⊗X

= X ⊗ f ⊗ f + g ⊗X ⊗ h+ ∆(g)⊗X.

It follows that δ(f) = f ⊗ f and ∆(g) = g ⊗ g. We have

∆(f) =
∑
k≥0

fk
k!

∆(Hk)

=
∑
k≥0

fk
k!

(H ⊗ 1 + 1⊗H)k

=
∑
k≥0

fk
k!

∑
i+j=k

(
k

i

)
Hi ⊗Hj

=
∑
i,j≥0

fi+j

i!j!
Hi ⊗Hj

= f ⊗ f =
∑
i,j≥0

fifj
i!j!

Hi ⊗Hj .

It follows that fifj = fi+j for all i, j. In particular,

fn = f1+1+···+1 = fn1 , and

f20 = f0.

2.5 The deformation A must satisfy (∆h(X) mod h) = ∆(X). This forces

f0 (mod h) = 1, and

(f1 mod h) = (g1 mod h) = 0.

So f0 is invertible in k[[h]]. It follows that f0 = 1 and that

f =
∑
k≥0

fk1H
k

k!
= exp(f1H), and

g = exp(g1H).

2.6 The quantization A must satisfy

∆(a)− σ∆(a)

h
mod h = δ(a mod h),

for all a ∈ A. This forces that

h−1(∆h(X)− σ∆h(X)) (mod h)

= h−1(X ⊗ exp(f1H) + exp(g1H)⊗X − exp(f1H)⊗X −X ⊗ exp(g1H)) (mod h)

= h−1(X ⊗ (exp(f1H)− exp(g1H)) + (exp(g1H)− exp(f1H))⊗X) (mod h).

Since (f1 mod h) = (g1 mod h) = 0 this is equal to

β(X ∧H) = δ(X) = h−1(∆h(X)− σ∆h(X)) (mod h) = X ⊗ (f1 − g1 mod h)H + (g1 − f1 mod h)H ⊗X.
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It follows that ((f1 − g1) mod h2) = βh.

2.7 Since we know that ∆h(exp(f1H)) = ∆h(f) = f ⊗ f = exp(f1H)⊗ exp(f1H) and that ∆h is an algebra
homomorphism we have that

∆h(Xexp(−(f1 + g1)H/2))

= Xexp(−(f1 + g1)H/2)⊗ exp((f1 − g1)H/2) + exp(−(f1 − g1)H/2)⊗Xexp(−(f1 + g1)H/2), and

∆h(Xexp(−g1H/2)) = Xexp(−g1H/2)⊗ exp((f1 − g1)H/2) + exp(0)⊗Xexp(−g1H/2).

Therefore, by a change of variables, we may choose f ∈ k[[h]] such that f mod h2 = βh and generators X
and H of A such that ∆h is given by

∆h(X) = X ⊗ exp(fH) + exp(−fH)⊗X, or

∆h(X) = X ⊗ exp(fH) + 1⊗X.

2.8 Suppose that f ∈ k[[h]] and that f mod h = 0 and that f mod h2 = β 6= 0. Then we have that

f = βh+ β2h
2 + β3h

3 + · · · ,

where βi ∈ k. Since β 6= 0 we have
f = βh(1 + β−1hQ),

where Q is some element of k[[h]]. Since 1 + β−1Q is invertible in k[[h]] it follows that we may replace f by
βh after a change of variable. Thus we may assume that the quantization is of the form

∆h(X) = X ⊗ exp(βhH) + exp(−βhH)⊗X, or

∆h(X) = X ⊗ exp(βhH) + 1⊗X.

2.9 Define an element K ∈ A by the equation

K = exp(βhH).

The element K is invertible with inverse K−1 = exp(−βhH). Using the relation [H,X] = αX we have that

HkX = Hk−1(HX −XH +XH) = Hk−1(αX +XH) = Hk−1X(α+H).

By induction it follows that HkX = X(α+H)k. Thus

KX =
∑
k≥0

βkhkHkX

k!

=
∑
k≥0

X
βkhk(α+H)k

k!

= Xexp(βh(α+H))

= exp(αβh)XK.

It follows that
KXK−1 = exp(αβh)X.

2.10 We want to define a Hopf algebra structure on A. Let us assume that ∆h is given by ∆h(H) =
1⊗H +H ⊗ 1 and ∆h(X) = X ⊗K +K−1 ⊗X. Then the counit condition gives that

H = m(id⊗ ε)∆(H) = Hε(1) + 1ε(H),
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forcing ε(H) = 0. It follows that ε(K) = 1. Using the counit condition again we have that

X = m(id⊗ ε)∆(X) = Xε(K) +K−1ε(X) = X · 1 +K−1ε(X).

It follows that ε(X) = 0. The antipode condition gives that

0 = ε(H) = HS(1) + 1 · S(H) = H + S(H).

Thus S(H) = −H. We get that S(K) = K−1. Using the antipode condition again gives

0 = ε(X) = m(id⊗ S)∆(X) = XS(K) +K−1S(X) = XK−1 +K−1S(X).

Thus S(X) = −KXK−1 = − exp(αβh)X. So the Hopf structure on A is given by

ε(H) = 0, ε(K) = 1, ε(X) = 0
S(H) = −H, S(K) = K−1, S(X) = − exp(αβh)X.

If we assume that the coproduct is of the form ∆h(X) = X ⊗K + 1⊗K then similar calculations will show
that the counit and the antipode are given by

ε(H) = 0, ε(K) = 1, ε(X) = 0
S(H) = −H, S(K) = K−1, S(X) = −XK−1.
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3. The double D(g) = g⊕ g∗ of g

3.1 Let us compute the double of (g, δ). Let H∗, Y ∈ g∗ be the dual basis to H,X. Then

〈[H∗, Y ], X〉 = 〈H∗ ⊗ Y, δ(X)〉
= β〈H∗ ⊗ Y,X ⊗H −H ⊗X〉
= −β.

Since δ(H) = 0, 〈[H∗, Y ], H〉 = 0. Thus we get that [H∗, Y ] = −βX∗. The remainder of the brackets are
computed by using the invariance of the inner product, giving

[H,X] = αX, [H,Y ] = −αY, [H,H∗] = 0,
[H∗, X] = βX, [H∗, Y ] = −βY,

[X,Y ] = βH + αH∗,

as the multiplication table for D(g) = g⊕ g∗.

3.2 Make the following change of basis,

X = X, Y = Y, K1 = (αβ)−1(αH∗ + βH), K2 = (αβ)−1(αH∗ − βH).

Then [g⊕ g∗,K2] = 0 and

[K1, X] = 2X, [K1, Y ] = −2Y, [X,Y ] = αβK1.

3.3 Since g has basis {X,H} and g∗ has dual basis {Y,H∗}, let

r = X ⊗ Y +H ⊗H∗.

Then
φ(X) = (ad⊗2X)(r) = β(X ∧H),

φ(H) = (ad⊗2H)(r) = 0,

φ(H∗) = (ad⊗2H∗)(r) = 0,

φ(Y ) = (ad⊗2Y )(r) = α(Y ∧H),

gives a Lie bialgebra structure on D(g).

3.4 We have that

H =
α

2
(K1 −K2), and H∗ =

β

2
(K1 +K2).

Substituting gives

r = X ⊗ Y +
αβ

4
(K1 −K2)⊗ (K1 +K2).

Set K2 = 0, i.e., project modulo the ideal spanned by K2, to get

r̄ = X ⊗ Y +
αβ

4
(K1 ⊗K1).

Then, one has that r̄ determines a Lie bialgebra structure on D(g)/K2 which has basis {X,Y,K1}, bracket
given by

[K1, X] = 2X, [K1, Y ] = −2Y, [X,Y ] = αβK1,

and cobracket given by

φ̄(X) = (ad⊗2X)(r̄) =
αβ

2
(X ∧H),

φ̄(H) = (ad⊗2H)(r̄) = 0,

φ̄(Y ) = (ad⊗2Y )(r̄) =
αβ

2
(Y ∧H).
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