Whittaker functions, crystal bases and quantum groups

Whittaker functions, crystal bases and quantum groups

Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville, VIC 3010 Australia
aram@unimelb.edu.au
and

Department of Mathematics
University of Wisconsin, Madison
Madison, WI 53706 USA
ram@math.wisc.edu

Last updates: 20 June 2010

Combinatoritcs and spherical functions

The Weyl group W0 acts on 𝔥 * . W0 has generators s1 ,, sn with relations si2 =1  and   si sj si = m ij   factors = sj si sj = m ij   factors , where π m ij = 𝔥 αi 𝔥 αj . Let u0 = w W0 w  and   e0 = w W0 -1 l w w  in   W0 , so that w u0 = u0 and e0 w= -1 l w w.

The Hecke algebra H0 has generators T1 ,, Tn with Ti2 = t 1 2 - t - 1 2 Ti +1  and   Ti Tj Ti m ij   factors = Tj Ti Tj m ij   factors

Let Tw = T i1 T il if w= s i1 s il is reduced, Tw | w W0   is a basis of   H0 . Let 10 = w W0 t 1 2 l w Tw   and   ε0 = w W0 - t - 1 2 l w Tw , so that Tw 10 = t 1 2 l w 10   and   ε1 Tw = - t - 1 2 l w ε0 .

Symmetric functions

𝔥 𝔥 *   dual vector spaces,   , : 𝔥 * × 𝔥 1 e , W0 a finite subgroup of GL 𝔥 generated by reflections. Then W0 acts on the group algebra K T ρt =span y λ | λ 𝔥 with y λ y σ = y λ + σ   by  w y λ = y w λ . The algebra of symmetric functions is K T ρt W0 = f K T ρt | wf=f,  for all  w W0 . Then K T ρt det = f K T ρt | wf=det w f,  for all  w W0 is a free K T ρt W0 -module of rank 1.

K T ρt W0 and K T ρt det have bases m λ = π0 y λ   and   α λ + ρ = ε0 y λ , λ 𝒫 + = 𝔥 W0 where π0 = w W0 w  and   ε0 = w W0 det w -1 w.

Weyl character formula

K T ρt W0 K T ρt det f aρ f m λ (naive basis) s λ a λ + ρ   (naive basis) m λ are the monomial symmetric functions.

s λ are the Weyl characters or Schur functions.

Note: K T ρt W0 = K G ρt =K G -modules and s λ   are the classes of the simple modules.

Affine Hercke algebra H and Gindikin-Karpelevich

X =span Xλ | λ 𝔥 *   and   Xλ Xμ = X λ+μ . H is actually generated by subalgebras H0 and X with Ti Xλ = X si λ Ti + t 1 2 - t - 1 2 1- X - αi Xλ - X si λ .

Intertwines τi are τi Xλ = X si λ τi , τi = Τi - t 1 2 - t - 1 2 1- X - αi   and   Τ i = τi + t 1 2 - t - 1 2 1- X - αi . In this language, Gindikin-Karpelevich is 1 0 = w W0 τw α + ,wα - t 1 2 1- t -1 X -α 1- X -α ε 0 = w W0 τw α + ,wα - - t 1 2 1-t X -α 1- X -α see Prop 3.15 in the thesis of Martha Yip. Tw Xλ | λ 𝔥 * ,w W0   is a basis of  H.

Casselamn-Shalika

Case q=0,t=0; Hermann Weyl; G u0 X = X W0 ~ X det = ε0 X mλ = u0 Xλ sλ=Weyl character/Schur function a λ+ρ = ε0 X λ+ρ h aρ h(Weyl denominator/ Vandermonde det)

Case q=0; Lusztig; G t X W0 =Z H 10 H 10 ~ ε0 H 10 𝒫 λ 0t 1 0 Xλ 10 sλ Cλ A λ+ρ = ε0 X λ+ρ 10 h Aρ h H 1 0 = X 10 =polynomial representation 𝒫 λ 0t =Hall-Littlewood polynomial=Macdonald spherical function Aρ = α + t 1 2 X α2 - t - 1 2 X - α 2 = t 1 2 l w0 Xρ α R+ 1- t -1 X -α (see arXiv0401298 with Nelson.)

Double affine Hecke algebra H~

H~ =span q k e Xμ Tw Y λ | k,μ 𝔥 * ,w W0 , λ 𝔥 H =span Xμ Tw | μ 𝔥 * ,w W0 H0 =span Tw | w W0 with q 1 2 Z H~ , Xμ Xν = X μ+ν , Y λ Y σ = Y λ + σ . H0 is generated by T1 ,, Tn with Ti2 = t 1 2 - t - 1 2 Ti +1  and   Ti Tj Ti m ij   factors = Tj Ti Tj m ij   factors where π m ij = 𝔥 αi 𝔥 αj .

H has a unique 1-dimensional module span 1 with Ti 1= t 1 2 1 for i=1,,n. The polynomial representation of H~ is Ind H H~ 1 = H~ 1=span q k e Y λ 1| k, λ 𝔥 = K T ρt 1.

Macdonald polynomials

Let 1 0 , Ε 0 H0 be such that 10 Ti = t 1 2 10   and   Ε 0 Ti = - t - 1 2 Ε0 for 1,,n. At t=1, 10 = π0 and ε0 = Ε 0 . Then K T ρt 1= H~ 1 10 H~ 1= K T ρt W0 1. The nonsymmetric Macdonald polynomial 𝒫 λ = 𝒫 λ qt is given by 𝒫 λ 1= 10 E λ 1. Define A λ + ρ = A λ + ρ qt in K T ρt by A λ + ρ 1= Ε 0 E λ + ρ 1.

Case q,t; Cherednik-Opdam-Macdonald; G ts ?

Let H~ be the double affine Hecke algebra Xμ Tw Y λ | μ 𝔥 * ,w W0 , λ 𝔥   is a basis of   H~ . Let 1 be such that Tw 1= t 1 2 l w 1 and Y λ 1= t λ ρ 1 X W0 1= 10 H~ 1 ε1 H~ 1 𝒫 λ qt 1 10 Eλ 1 𝒫 λ q qt 1 A λ+μ q,t = ε0 E λ+μ 1 h Aρ h H~ =` X 1=polynomial representation of   H~ Eλ = Eλ qt =nonsymmetrical Macdonald polynomial   Aρ = α + t 1 2 X α 2 - t - 1 2 X - α 2 ,  see Prop 2.13 in Yip's thesis. (see Macdonald Seminaire Bourbaki 1995).

Big picture

K T ρt W0 1= 10 H~ 1 Ε 0 H~ 1 f1 A ρ qt f1 1 0 E λ 1= 𝒫 λ qt 1 𝒫 λ q qt 1 A λ + ρ qt 1= Ε 0 E λ + ρ 1 At q=0 this picture becomes K T ρt W0 1= 10 H 10 Ε 0 H 10 f 10 A ρ 0t f 10 1 0 Y λ 10 = 𝒫 λ 0t 10 s λ 10 𝒫 λ 00 10 A λ + ρ 0t 1= Ε 0 Y λ + ρ 1 where H=span Tw Y λ | w W0 , λ 𝔥

At q=0,t=1, this becomes K T ρt W0 K T ρt det f a ρ f π0 Y λ = m λ s λ a λ + ρ = ε0 Y λ + ρ

Remarks

  1. At q0, Z H~ is trivial. ( Z H~ = q ± 1 e ).
    At q=0,Z H~ is big, and contains K T ρt W0 =Z H (theorem of Bernstein).
  2. The Satake isomorphism is 10 H 10 K T ρt W0 10 10 Y λ 10 𝒫 λ 0t 10 and 𝒫 λ 0t is the Macdonald spherical function or Hall-Littlewood polynomial.
  3. H Grothendieck ring (product is convolution) of I equivariant perverse sheaves on G/I.
    10 H 10 = Grothendieck ring of K equivariant perverse sheaves on G/K.
    G/I= affine flag variety, G/K= Loop Grassmanian
    s λ 10 is the Kazhdan-Lusztig basis of 10 H 10 , ie s λ 1 is the image of IC K h λ t -1 K _ .
  4. K T ρt det Ε 0 H~ 1 Ε 0 H1 are "Fock spaces" and 10 H~ 1 Ε 0 H~ 1 are 'boson-Fermion correspondences'. The big picture at q=0 is a 1981 paper of Lusztig which started "geometric Langlands".
  5. In H~ , Ti Xμ = X si μ + t 1 2 - t - 1 2 Xμ - X si μ 1- X αi (Bernstein-Lusztig relation) is equivalent to τi Xμ = X si μ τi ,  where   τi = Ti + t 1 2 - t - 1 2 1- X αi = Ti -1 + t 1 2 - t - 1 2 X αi 1- X αi (intertiner)
If Y λ = s i1 s il is a minimal length walk to Y λ in W, then, in H~ , Y λ = T i1 ε1 T il εl where εk =1 if the k th step is - +
and where εk =-1 if the k th step is - +
and E λ = τ i1 τ il 1.

Using folded alcove walks this can be exapnded to give a formula E λ = folded alcove paths  p explicit coefficients y end p , which has similar coefficients to the Haglund-Haiman-Loehr formula for E λ in type GL n and generalises s λ = column strict tableaux  p y wt p = Littelmann paths  p y end p and the positively folded walks labeling points in MV intersections IwI U 0- vI.

References [PLACEHOLDER]

[BG] A. Braverman and D. Gaitsgory, Crystals via the affine Grassmanian, Duke Math. J. 107 no. 3, (2001), 561-575; arXiv:math/9909077v2, MR1828302 (2002e:20083)

page history