Representation theory
 Lecture Notes: Chapter 1

Arun Ram*
Department of Mathematics
University of Wisconsin-Madison
Madison, WI 53706
ram@math.wisc.edu
Version: April 2, 2004

1. Algebras and representations.

Algebras.

An algebra is a vector space (over \mathbb{C}) with a multiplication such that A is a ring with identity, i.e. there is a map $A \times A \rightarrow A,(a, b) \mapsto a b$, which is bilinear and satisfies the associative and distributive laws. The following are examples of algebras:
(1) The group algebra of a group G is the vector space $\mathbb{C} G$ with basis G and with multiplication forced by the multiplication in G (and the bilinearity).
(2) If M is a vector space (over \mathbb{C}) then the space $\operatorname{End}(M)$ of \mathbb{C}-linear transformations of M is an algebra under the multiplication given by composition of endomorphisms.
(3) Given a basis $B=\left\{b_{1}, \ldots, b_{d}\right\}$ of the vector space M the algebra $\operatorname{End}(M)$ can be idenitified with the algebra $M_{d}(\mathbb{C})$ of $d \times d$ matrices $T=\left(T_{i j}\right)_{1 \leq i, j, \leq d}$ with entries in \mathbb{C} via

$$
T b_{i}=\sum_{i=1}^{d} b_{j} T_{j i}, \quad \text { for } t \in \operatorname{End}(M)
$$

Let A be an algebra. An $i d e a l$ in A is a subspace $I \subset A$ such that $a r \in I$ and $r a \in I$, for all $a \in A$ and $r \in I$. A minimal ideal of A is a nonzero ideal I which cannot be written as a direct sum $I=I_{1} \oplus I_{2}$ of nonzero ideals I_{1} and I_{2} of A. An idempotent is a nonzero element $p \in A$ such that $p^{2}=p$. Two idempotents $p_{1}, p_{2} \in A$ are orthogonal if $p_{1} p_{2}=p_{2} p_{1}=0$. A minimal idempotent is an idempotent p that cannot be written as a sum $p=p_{1}+p_{2}$ of orthogonal idempotents $p_{1}, p_{2} \in A$. The center of A is

$$
Z(A)=\{z \in A \mid a z=z a \text { for all } a \in A\}
$$

A central idempotent is an idempotent in $Z(A)$ and a minimal central idempotent is a central idempotent z that cannot be written as a sum $z=z_{1}+z_{2}$ of orthogonal central idempotents z_{1} and z_{2}.

A trace on A is a linear map $\overrightarrow{t:} A \rightarrow \mathbb{C}$ such that

$$
\vec{t}\left(a_{1} a_{2}\right)=\vec{t}\left(a_{2} a_{1}\right), \quad \text { for all } a_{1}, a_{2} \in A
$$

[^0]A character of A is a trace on A. A trace \vec{t} on A is nondegenerate if for each $b \in A$ there is an $a \in A$ such that $\vec{t}(b a) \neq 0$. The radical of a trace \vec{t} is

$$
\begin{equation*}
\operatorname{rad} t=\{b \in A \mid \vec{t}(b a)=0 \text { for all } a \in A .\} \tag{1.1}
\end{equation*}
$$

Every trace \vec{t} on A determines a symmetric bilinear form $\langle\rangle:, A \times A \rightarrow \mathbb{C}$ given by

$$
\begin{equation*}
\left\langle a_{1}, a_{2}\right\rangle=\vec{t}\left(a_{1} a_{2}\right), \quad \text { for all } a_{1}, a_{2} \in A \tag{1.2}
\end{equation*}
$$

The form \langle,$\rangle is nondegenerate if and only if the trace \vec{t}$ is nondegenerate and the radical

$$
\operatorname{rad}\langle,\rangle=\{a \in A \mid\langle a, b\rangle=0 \text { for all } b \in A\}
$$

of the form \langle,$\rangle is the same as \operatorname{rad} \vec{t}$.
Lemma 1.3. Let \vec{t} be a trace on A and let \langle,$\rangle be the bilinear form on A$ defined by the trace \vec{t}, as in ??. Let B be a basis of A. Let $G=\left(\left\langle b, b^{\prime}\right\rangle\right)_{b, b^{\prime} \in B}$ be the matrix of the form \langle,$\rangle with respect$ to B. The following are equivalent:
(1) The trace \vec{t} is nondegenerate.
(2) $\operatorname{det} G \neq 0$.
(3) The dual basis B^{*} to the basis B with respect to the form \langle,$\rangle exists.$

Proof. (2) \Leftrightarrow (1): The trace \vec{t} is degenerate if there is an element $a \in A, a \neq 0$, such that $\vec{t}(a c)=0$ for all $c \in B$. If $a_{b} \in \mathbb{C}$ are such that

$$
a=\sum_{b \in B} a_{b} b, \quad \text { then } \quad 0=\langle a, c\rangle=\sum_{b \in B} a_{b}\langle b, c\rangle
$$

for all $c \in B$. So a exists if and only if the columns of G are linearly dependent, i.e. if an only if G is not invertible.
$(3) \Leftrightarrow(2)$: Let $B^{*}=\left\{b^{*}\right\}$ be the dual basis to $\{b\}$ with respect to \langle,$\rangle and let P$ be the change of basis matrix from B to B^{*}. Then

$$
d^{*}=\sum_{b \in B} P_{d b} b, \quad \text { and } \quad \delta_{b c}=\left\langle b, d^{*}\right\rangle=\sum_{d \in B} P_{d c}\langle b, c\rangle=\left(G P^{t}\right)_{b, c} .
$$

So P^{t}, the transpose of P, is the inverse of the matrix G. So the dual basis to B exists if and only if G is invertible, i.e. if and only if $\operatorname{det} G \neq 0$.

Proposition 1.4. Let A be an algebra and let \vec{t} be a nondegenerate trace on A. Define a symmetric bilinear form $\langle\rangle:, A \times A \rightarrow \mathbb{C}$ on A by $\left\langle a_{1}, a_{2}\right\rangle=\vec{t}\left(a_{1} a_{2}\right)$, for all $a_{1}, a_{2} \in A$. Let B be a basis of A and let B^{*} be the dual basis to B with respect to \langle,$\rangle . Let a \in A$ and define

$$
[a]=\sum_{b \in B} b a b^{*} .
$$

Then $[a]$ is an element of the center $Z(A)$ of A and $[a]$ does not depend on the choice of the basis B.

Proof. Let $c \in A$. Then

$$
c[a]=\sum_{b \in B} c b a b^{*}=\sum_{b \in B} \sum_{d \in B}\left\langle c b, d^{*}\right\rangle d a b^{*}=\sum_{d \in B} d a \sum_{b \in B}\left\langle d^{*} c, b\right\rangle b^{*}=\sum_{d \in B} d a d^{*} c=[a] c,
$$

since $\left\langle c b, d^{*}\right\rangle=\vec{t}\left(c b d^{*}\right)=\vec{t}\left(d^{*} c b\right)=\left\langle d^{*} c, b\right\rangle$. So $[a] \in Z(A)$.
Let D be another basis of A and let D^{*} be the dual basis to D with respect to \langle,$\rangle . Let$ $P=\left(P_{d b}\right)$ be the transition matrix from D to B and let P^{-1} be the inverse of P. Then

$$
d=\sum_{b \in B} P_{d b} b \quad \text { and } \quad d^{*}=\sum_{\tilde{b} \in B}\left(P^{-1}\right)_{\tilde{b} d} \tilde{b}^{*},
$$

since

$$
\left\langle d, \tilde{d}^{*}\right\rangle=\left\langle\sum_{b \in B} P_{d b} b, \sum_{\tilde{b} \in B}\left(P^{-1}\right)_{\tilde{b} \tilde{d}} \tilde{b}^{*}\right\rangle=\sum_{b, \tilde{b} \in B} P_{d b}\left(P^{-1}\right)_{\tilde{d} \tilde{d}} \delta_{b \tilde{b}}=\delta_{d \tilde{d}} .
$$

So

$$
\sum_{d \in D} d a d^{*}=\sum_{d \in D} \sum_{b \in B} P_{d b} b a \sum_{\tilde{b} \in B}\left(P^{-1}\right)_{\tilde{b} d} \tilde{b}^{*}=\sum_{b, \tilde{b} \in B} b a \tilde{b}^{*} \delta_{b \tilde{b}}=\sum_{b \in B} b a b^{*} .
$$

So $[a]$ does not depend on the choice of the basis B.

Representations.

An A-module is a vector space M (over \mathbb{C}) with an A-action, i.e. a map $A \times M \rightarrow M$, $(a, m) \mapsto a m$, which is bilinear and such that

$$
1_{A} m=m \quad \text { and } \quad a_{1}\left(a_{2} m\right)=\left(a_{1} a_{2}\right) m,
$$

for all $a_{1}, a_{2} \in A$ and $m \in M\left(1_{A}\right.$ denotes the identity in the algebra $\left.A\right)$. A representation of A is an A-module. A representation of a group G is a representation of the group algebra $\mathbb{C} G$. The character of an A-module M is the map $\chi^{M}: A \rightarrow \mathbb{C}$ given by

$$
\chi^{M}(a)=\operatorname{Tr}(M(a)), \quad \text { for } a \in A
$$

where $M(a)$ is the linear transformation of M determined by the action of A and $\operatorname{Tr}(M(a))$ is the trace of $M(a)$. An irreducible character of A is the character of an irreducible representation of A.

An A-module M gives rise to a map

$$
\begin{array}{clc}
A & \longrightarrow \quad \operatorname{End}(M) \tag{1.5}\\
a & \longmapsto & M(a)
\end{array}
$$

where $M(a)$ is the linear transformation of M determined by the action of a on M. This map is linear and satisfies

$$
\begin{aligned}
M\left(1_{A}\right) & =\operatorname{Id}_{M}, \\
M\left(a_{1} a_{2}\right) & =M\left(a_{1}\right) M\left(a_{2}\right),
\end{aligned}
$$

for all $a_{1}, a_{2} \in A$, i.e. $A \rightarrow \operatorname{End}(M)$ is a homomorphism of algebras. (Given a basis $B=$ $\left\{b_{1}, \ldots, b_{d}\right\}$ of M the map $A \rightarrow \operatorname{End}(M)$ can be identified with a map $M: A \rightarrow M_{d}(\mathbb{C})$.) Conversely, an algebra homomorphism as in ??? and ??? determines an A-action on M by

$$
a m=M(a) m, \quad \text { for all } a \in A \text { and } m \in M .
$$

Thus, the map $M: A \rightarrow \operatorname{End}(M)$ and the A-module M are equivalent data. Historically, the $\operatorname{map} M: A \rightarrow \operatorname{End}(M)$ was the representation and M was the A-module, but now the terms representation and A-module are used interchangeably. This is the reason for the use of the letter M, both for the A-module and the corresponding algebra homomorphism $M: A \rightarrow \operatorname{End}(M)$.

A submodule of an A-module M is a subspace $N \subseteq M$ such that $a n \in N$, for all $a \in A$ and $n \in N$. An A-module M is simple or irreducible if it has no submodules except 0 and itself. The direct sum of two A-modules M_{1} and M_{2} is the vector space $M=M_{1} \oplus M_{2}$ with A-action given by

$$
a\left(m_{1}, m_{2}\right)=\left(a m_{1}, a m_{2}\right), \quad \text { for all } a \in A, m_{1} \in M_{1} \text { and } m_{2} \in M_{2}
$$

An A-module M is semisimple or completely decomposable if M can be written as a direct sum of simple submodules. An A-module M is indecomposable if M cannot be written as a direct sum $M=M_{1} \oplus M_{2}$ of nonzero submodules $M_{1} \subseteq M$ and $M_{2} \subseteq M$.

Here we need a reference to the reader to look at the examples in Chapter 2 etc.

Homomorphisms

Let M and N be A-modules. Then define

$$
\operatorname{Hom}_{A}(M, N)=\{\phi \in \operatorname{Hom}(M, N) \mid a \phi(m)=\phi(a m), \text { for all } a \in A \text { and } m \in M\},
$$

where $\operatorname{Hom}(M, N)$ is the set of \mathbb{C}-linear transformations from M to N. The proof of the following Proposition is identical to the proof of Proposition ??? except with a replaced by ϕ.

Proposition 1.6. Let A be an algebra and let \vec{t} be a nondegenerate trace on A. Define a symmetric bilinear form $\langle\rangle:, A \times A \rightarrow \mathbb{C}$ on A by $\left\langle a_{1}, a_{2}\right\rangle=\vec{t}\left(a_{1} a_{2}\right)$, for all $a_{1}, a_{2} \in A$. Let B be a basis of A and let B^{*} be the dual basis to B with respect to \langle,$\rangle . Let M$ and N be A-modules and let $\phi \in \operatorname{Hom}(M, N)$. Define

$$
[\phi]=\sum_{b \in B} b \phi b^{*} .
$$

Then $[\phi] \in \operatorname{Hom}_{A}(M, N)$ and $[\phi]$ does not depend on the choice of the basis B.

Direct sums of algebras

Proposition 1.7. Let A and B be algebras and let $A^{\lambda}, \lambda \in \hat{A}$, and $B^{\mu}, \mu \in \hat{B}$, be the irreducible representations of A and B, respectively. The irreducible representations of $A \oplus B$ are $A^{\lambda}, \lambda \in \hat{A}$, with $A \oplus B$ action given by

$$
(a, b) m=a m, \quad \text { for } a \in A, b \in B, m \in A^{\lambda}
$$

and $B^{\mu}, \mu \in \hat{B}$, with $A \oplus B$ action given by

$$
(a, b) n=b n, \quad \text { for } a \in A, b \in B, \text { and } n \in B^{\mu} .
$$

Proof. The elements $(1,0)$ and $(0,1)$ in $A \oplus B$ are central idempotents of $A \oplus B$ such that $(1,0)(0,1)=(0,0)$. If P is an $A \oplus B$-module then

$$
P=(1,0) P \oplus(0,1) P
$$

and this is a decomposition as $A \oplus B$-modules. Since

$$
(a, b)(1,0) p=(a, 0)(1,0) p, \quad \text { and } \quad(a, b)(0,1) p=(0, b)(0,1) p,
$$

for all $a \in A, b \in B$, and $p \in P$, the structure of $(1,0) P$ is determined completely by the A action and the structure of $(0,1) P$ is determined by the action of B. If P is a simple module then $P=(1,0) P$ or $P=(0,1) P$. In the first case $P \cong A^{\lambda}$ for some $\lambda \in \hat{A}$ and in the second $P \cong B^{\mu}$ for some $\mu \in \hat{B}$.

Similar arguments with the elements $(1,0)$ and $(0,1)$ in $A \oplus B$ yield the following.
(1) If A and B are algebras then the ideals of $A \oplus B$ are all of the form $I \oplus J$ where I is an ideal of A and J is an ideal of B.
(2) If A and B are algebras then $Z(A \oplus B)=Z(A) \oplus Z(B)$.
(3) If A and B are algebras and \vec{t} is a trace on $A \oplus B$ then \vec{t} is given by

$$
\vec{t}(a, b)=\vec{t}_{A}(a)+\vec{t}_{B}(b),
$$

where \vec{t}_{A} is the trace on A given by $\vec{t}_{A}(a)=\vec{t}(a, 0)$ and \vec{t}_{B} is the trace on B given by $\vec{t}_{B}(b)=\vec{t}(0, b)$.

Tensor products

Let M and N be vector spaces and let

$$
B_{m}=\left\{m_{i}\right\} \quad \text { and } \quad B_{n}=\left\{n_{j}\right\}
$$

be bases of M and N, respectively. The tensor product $M \otimes N$ is the vector space with basis

$$
B_{M \otimes N}=\left\{m_{i} \otimes n_{j} \mid m_{i} \in B_{M}, n_{j} \in B_{n}\right\}
$$

If $m=\sum_{i} c_{i} m_{i}$, and $n=\sum_{j} d_{j} n_{j}$, then write

$$
m \otimes n=\left(\sum_{i} c_{i} m_{i}\right) \otimes\left(\sum_{j} d_{j} n_{j}\right)=\sum_{i, j} c_{i} d_{j}\left(m_{i} \otimes n_{j}\right)
$$

If A and Z are algebras the tensor product is the vector space $A \otimes Z$ with multiplication determined by

$$
\left(a_{1} \otimes z_{1}\right)\left(a_{2} \otimes z_{2}\right)=a_{1} a_{2} \otimes z_{1} z_{2}, \quad \text { for all } a_{1}, a_{2} \in A, z_{1}, z_{2} \in Z
$$

If M and N are vector spaces then

$$
\operatorname{End}(M \otimes N)=\operatorname{End}(M) \otimes \operatorname{End}(N) \quad \text { as algebras. }
$$

This equality can be expressed in terms of matrices by choosing bases $\left\{m_{1}, \ldots, m_{r}\right\}$ and $\left\{n_{1}, \ldots, n_{s}\right\}$ of M and N, respectively. The $\operatorname{End}(M)$ is identified with $M_{r}(\mathbb{C})$ and $\operatorname{End}(N)$ is identified with $M_{s}(\mathbb{C})$ by

$$
E_{i j} m_{j}=m_{i} \quad \text { and } E_{k \ell} n_{\ell}=n_{k}, \quad \text { for } 1 \leq i, j \leq r \text { and } 1 \leq k, \ell \leq s .
$$

Then

$$
\left(E_{i j} \otimes E_{k \ell}\right)\left(m_{j} \otimes n_{\ell}\right)=E_{i j} m_{j} \otimes E_{k \ell} n_{\ell}=m_{i} \otimes n_{k}
$$

Use the (ordered) basis

$$
\left\{m_{1} \otimes n_{1}, \ldots m_{1} \otimes n_{s}, m_{2} \otimes n_{1}, \ldots, m_{2} \otimes n_{s}, \ldots, m_{r} \otimes n_{1}, \ldots, m_{r} \otimes n_{s}\right\}
$$

of $M \otimes N$ to identify $\operatorname{End}(M \otimes N)$ with $M_{r s}(\mathbb{C})$. Then, if $a=\left(a_{i j}\right) \in M_{r}(\mathbb{C})$ and $b=\left(b_{k \ell}\right) \in M_{s}(\mathbb{C})$ then $a \otimes b$ is the $r s \times r s$ matrix

$$
a \otimes b=\left(\begin{array}{cccc}
a_{11} b & a_{12} b & \cdots & a_{1 r} b \\
a_{21} b & a_{22} b & \cdots & a_{2 r} b \\
\vdots & & \ddots & \vdots \\
a_{r 1} b & a_{r 2} b & \cdots & a_{r r} b
\end{array}\right)
$$

Theorem 1.8. Let A and B be algebras. Let $A^{\lambda}, \lambda \in \hat{A}$, be the simple A-modules and let B^{μ}, $\mu \in \hat{B}$, be the simple B-modules. The simple $A \otimes B$-modules are

$$
A^{\lambda} \otimes B^{\mu}, \quad \lambda \in \hat{A}, \mu \in \hat{B}, \quad \text { where } \quad(a \otimes b)(m \otimes n)=a m \otimes b n
$$

for $a \in A, b \in B, m \in A^{\lambda}, n \in B^{\mu}$.
Proof. There are two things to show:
(1) $A^{\lambda} \otimes B^{\mu}$ is a simple $A \otimes B$-module,
(2) If P is a simple $A \otimes B$-module then $P \cong A^{\lambda} \otimes B^{\mu}$ for some $\lambda \in \hat{A}$ and $\mu \in \hat{B}$.
(1) By Burnside's theorem $\operatorname{End}\left(A^{\lambda}\right)=A^{\lambda}(A)$ and $\operatorname{End}\left(B^{\mu}\right)=B^{\mu}(B)$ and therefore

$$
\operatorname{End}\left(A^{\lambda} \otimes B^{\mu}\right)=\operatorname{End}\left(A^{\lambda}\right) \otimes \operatorname{End}\left(B^{\mu}\right)=A^{\lambda}(A) \otimes B^{\mu}(B)=\left(A^{\lambda} \otimes B^{\mu}\right)(A \otimes B)
$$

So $A^{\lambda} \otimes B^{\mu}$ has no submodules. So $A^{\lambda} \otimes B^{\mu}$ is simple.
(2) Let P be a simple $(A \otimes B)$-module. Let A^{λ} be a simple A-submodule of P and let B^{μ} be a simple B-submodule of $\operatorname{Hom}_{A}\left(A^{\lambda}, P\right)$. We claim that $A^{\lambda} \otimes B^{\mu} \cong P$.

Consider the $(A \otimes B)$-module homomorphism

$$
\begin{aligned}
\Phi: A^{\lambda} \otimes B^{\mu} \hookrightarrow A^{\lambda} \otimes \operatorname{Hom}_{A}\left(A^{\lambda}, P\right) & \longrightarrow \\
m \otimes \phi & \longmapsto \phi(m) .
\end{aligned}
$$

This map is nonzero since the injection $\phi: A^{\lambda} \hookrightarrow P$ is a nonzero element of $\operatorname{Hom}_{A}\left(A^{\lambda}, P\right)$. Since $A^{\lambda} \otimes B^{\mu}$) is simple ker $\Phi=0$ and since P is simple $\operatorname{im} \Phi=P$. So $A^{\lambda} \otimes B^{\mu} \cong P$.

2. The algebra $M_{d}(\mathbb{C})$.

Let $A=M_{d}(\mathbb{C})$ be the algebra of $d \times d$ matrices with entries from \mathbb{C}. Set
$E_{i j}=$ the matrix with 1 in the (i, j) entry and all other entries 0.
Then $\left\{E_{i j} \mid 1 \leq i, j \leq d\right\}$ is a basis of A and

$$
E_{i j} E_{k l}=\delta_{j k} E_{i l}, \quad 1 \leq i, j, k, l \leq d
$$

describes the multiplication in A.
Theorem 2.1. Let $M_{d}(\mathbb{C})$ be the algebra of $d \times d$ matrices with entries from \mathbb{C}.
(a) Up to isomorphism, there is only one irreducible representation M of $M_{d}(\mathbb{C})$.
(b) $\operatorname{dim}(M)=d$.
(c) The character $\chi^{M}: A \rightarrow \mathbb{C}$ of M is given by

$$
\chi^{M}(a)=\operatorname{Tr}(a), \quad \text { for all } a \in A,
$$

where $\operatorname{Tr}(a)$ is the trace of the matrix a.
(d) The irreducible representation M is the vector space

$$
M=\left\{\left(c_{1}, \ldots, c_{d}\right)^{t} \mid c_{i} \in \mathbb{C}\right\}
$$

of column vectors of length d with A-action given by left multiplication, or, equivalently, M is given by the map

$$
\begin{array}{cccc}
M: & A & \longrightarrow & M_{d}(\mathbb{C}) \\
a & \longmapsto & a,
\end{array}
$$

Proof. There are two things to show:
(1) M, as defined in (d), is a simple A-module, and
(2) If C is a simple A-module then $C \cong M$.
(1) Let ϵ_{i} be the column vector which has 1 in the i th entry and 0 in all other entries. The set $\left\{\epsilon_{1}, \ldots, \epsilon_{d}\right\}$ is a basis of M. Let $N \subseteq M$ be a nonzero submodule of M and let $n=\sum_{i=1}^{d} n_{i} \epsilon_{i}$ be a nonzero vector in N. Then $n_{j} \neq 0$ for some j and so

$$
\epsilon_{k}=\frac{1}{n_{j}} E_{k j} n \in N, \quad \text { for all } 1 \leq k \leq d .
$$

Thus $N=M$, since N contains a basis of M.
(2) Let C be a simple A-module and let c be a nonzero vector in C. Since $c=\operatorname{Id} \cdot c=\sum_{i=1}^{d} E_{i i} c \neq 0$, $E_{j j} c \neq 0$ for some j. Define an A-module homomorphism by

$$
\begin{array}{cccc}
\phi: & M & \longrightarrow & C \\
& \epsilon_{k} & \longmapsto & E_{k j} c .
\end{array}
$$

Since $\phi\left(\epsilon_{j}\right) \neq 0$, $\operatorname{ker} \phi \neq 0$. Since M is simple, $\operatorname{ker} \phi=M$ and so ϕ is injective. Since $\operatorname{im} \phi \neq 0$ and C is simple, $\operatorname{im} \phi=C$ and so ϕ is surjective. So ϕ is an isomorphism and $C \cong M$.

Proposition 2.2. Let $M_{d}(\mathbb{C})$ be the algebra of $d \times d$ matrices with entries from \mathbb{C}.
(1) The only ideals of $M_{d}(\mathbb{C})$ are 0 and $M_{d}(\mathbb{C})$.
(2) $Z\left(M_{d}(\mathbb{C})\right)=\mathbb{C} \cdot \mathrm{Id}$ and Id is the only central idempotent in $M_{d}(\mathbb{C})$.
(3) Up to constant multiples, the trace $\operatorname{Tr}: M_{d}(\mathbb{C}) \rightarrow \mathbb{C}$ given by

$$
\operatorname{Tr}(a)=\sum_{i=1}^{d} a_{i i}, \quad \text { for all } a=\left(a_{i j}\right) \in M_{d}(\mathbb{C}),
$$

is the unique trace on $M_{d}(\mathbb{C})$.
Proof. Let $E_{i j}$ denote the matrix in $M_{d}(\mathbb{C})$ which has a 1 in the (i, j) entry and 0 everywhere else. (1) Let I be a nonzero ideal of $M_{d}(\mathbb{C})$ and let $r=\left(r_{i j}\right) \in I, r \neq 0$. Let $r_{i j}$ be a nonzero entry of r. Then

$$
\frac{1}{r_{i j}} E_{k i} r E_{j l}=E_{k l} \in I, \quad \text { for all } 1 \leq k, l \leq d
$$

So I contains a basis of $M_{d}(\mathbb{C})$. So $I=M_{d}(\mathbb{C})$.
(2) Clearly $\mathbb{C I d} \subseteq Z\left(M_{d}(\mathbb{C})\right.$. Let $z=\left(z_{i j}\right) \in Z\left(M_{d}(\mathbb{C})\right)$. If $i \neq j$ then

$$
z_{i j} E_{i j}=E_{i i} z E_{j j}=z E_{i i} E_{j j}=0
$$

So $z_{i j}=0$ if $i \neq j$. Further

$$
z_{i i} E_{i i}=E_{i i} z E_{i i}=E_{i 1} z E_{1 i} E_{i i}=z_{11} E_{i i}
$$

so $z_{i i}=z_{11}$ for all $1 \leq i \leq d$. So $z=z_{11}$ Id. So $Z\left(M_{d}(\mathbb{C})\right) \subseteq \mathbb{C I d}$. So $Z\left(M_{d}(\mathbb{C})\right)=\mathbb{C}$ Id.
(3) Let $\chi: M_{d}(\mathbb{C}) \rightarrow \mathbb{C}$ be a trace on $M_{d}(\mathbb{C})$. If $a=\left(a_{i j}\right) \in M_{d}(\mathbb{C})$ then

$$
\chi\left(E_{i i} a E_{j j}\right)=a_{i j} \chi\left(E_{i j}\right)=a_{i j} \chi\left(E_{i 1} E_{1 j}\right)=a_{i j} \chi\left(E_{1 j} E_{i 1}\right)=a_{i j} \delta_{i j} \chi\left(E_{11}\right)
$$

Thus

$$
\chi(a)=\chi\left(\left(\sum_{i=1}^{d} E_{i i}\right) a\left(\sum_{j=1}^{d} E_{j j}\right)\right)=\sum_{i, j=1}^{d} a_{i j} \delta_{i j} \chi\left(E_{11}\right)=\chi\left(E_{11}\right) \operatorname{Tr}(a) .
$$

So χ is a multiple of the trace Tr .

3. The algebra $\bigoplus_{\lambda \in \hat{A}} M_{d_{\lambda}}(\mathbb{C})$.

Let \hat{A} be a finite set and let d_{λ} be positive integers indexed by the elements of \hat{A}. Let

$$
A=\bigoplus_{\lambda \in \hat{A}} M_{d_{\lambda}}(\mathbb{C})
$$

be the algebra of block diagonal matrices with blocks $M_{d_{\lambda}}(\mathbb{C})$. Let $E_{i j}^{\lambda}$ be the matrix which has a 1 in the (i, j) entry of the λ th block and 0 everywhere else. Then $\left\{E_{i j}^{\lambda} \mid \lambda \in \hat{A}, 1 \leq i, j, \leq d_{\lambda}\right\}$ is a basis of A and the relations

$$
E_{i j}^{\lambda} E_{k l}^{\mu}=\delta_{\lambda \mu} \delta_{i j} E_{i l}^{\lambda}
$$

determine the multiplication in A.
The following theorems are consequences of Theorems ?? and Proposition ???.
Theorem 3.1. Let \hat{A} be a finite set and let d_{λ} be positive integers indexed by the elements of \hat{A}. Let

$$
A=\bigoplus_{\lambda \in \hat{A}} M_{d_{\lambda}}(\mathbb{C})
$$

be the algebra of block diagonal matrices with blocks $M_{d_{\lambda}}(\mathbb{C})$.
(1) The irreducible representations A^{λ} of A are indexed by the elements of \hat{A}.
(2) $\operatorname{dim}\left(A^{\lambda}\right)=d_{\lambda}$.
(3) The character $\chi^{\lambda}: A \rightarrow \mathbb{C}$ of A^{λ} is given by

$$
\chi^{\lambda}(a)=\operatorname{Tr}\left(A^{\lambda}(a)\right), \quad a \in A,
$$

where $A^{\lambda}(a)$ is the λ th block of the matrix a.
(4) The irreducible representation A^{λ} is given by the map

$$
\begin{aligned}
A^{\lambda}: & A
\end{aligned} \longrightarrow M_{d_{\lambda}}(\mathbb{C}),
$$

where $A^{\lambda}(a)$ is the λ th block of the matrix A, or, equivalently, by the vector space A^{λ} of column vectors of length d_{λ} and A-action given by

$$
a m=A^{\lambda}(a) m, \quad \text { for } a \in A \text { and } m \in A^{\lambda} .
$$

Theorem 3.2. Let \hat{A} be a finite set and let d_{λ} be positive integers indexed by the elements of \hat{A}. Let

$$
A=\bigoplus_{\lambda \in \hat{A}} M_{d_{\lambda}}(\mathbb{C}),
$$

be the algebra of block diagonal matrices with blocks $M_{d_{\lambda}}(\mathbb{C})$. If $a \in A$ let $A^{\lambda}(a)$ denote the λ th block of the matrix a. Let $E_{i j}^{\lambda}$ be the matrix which has a 1 in the (i, j) entry of the λ th block and 0 everywhere else.
(1) The minimal ideals of A are given by

$$
I^{\lambda}=\left\{a \in A \mid A^{\mu}(a)=0 \text { for all } \mu \neq \lambda\right\}, \quad \lambda \in \hat{A},
$$

and every ideal of A is of the form $I=\bigoplus_{\lambda \in S} I^{\lambda}$, for some subset $S \subseteq \hat{A}$.
(2) The minimal central idempotents of A are

$$
z_{\lambda}=\sum_{i=1}^{d_{\lambda}} E_{i i}^{\lambda}, \quad \lambda \in \hat{A},
$$

and $\left\{z_{\lambda} \mid \lambda \in \hat{A}\right\}$ is a basis of the center $Z(A)$ of A.
(3) The irreducible characters $\chi^{\lambda}, \lambda \in \hat{A}$, of A are given by

$$
\chi^{\lambda}(a)=\operatorname{Tr}\left(A^{\lambda}(a)\right), \quad a \in A,
$$

and every trace $\vec{t}: A \rightarrow \mathbb{C}$ on A can be written uniquely in the form

$$
\vec{t}=\sum_{\lambda \in \hat{A}} t_{\lambda} \chi^{\lambda}, \quad t_{\lambda} \in \mathbb{C} .
$$

Let A be an algebra which is isomorphic to a direct sum of matrix algebras and fix an isomorphism

$$
\begin{equation*}
\phi: A \cong \bigoplus_{\lambda \in \hat{A}} M_{d_{\lambda}}(\mathbb{C}) \tag{3.3}
\end{equation*}
$$

The elements

$$
e_{i j}^{\lambda}=\phi^{-1}\left(E_{i j}\right)^{\lambda}, \quad \lambda \in \hat{A}, \quad 1 \leq i, j \leq d_{\lambda}
$$

are matrix units in A, i.e. $\left\{e_{i j}^{\lambda} \mid \lambda \in \hat{A}, 1 \leq i, j \leq d_{\lambda}\right\}$ is a basis of A and

$$
e_{i j}^{\lambda} e_{k l}^{\mu}=\delta_{\lambda \mu} \delta_{i j} e_{i l}^{\lambda}
$$

for all $\lambda, \mu \in \hat{A}, 1 \leq i, j \leq d_{\lambda}, 1 \leq k, l \leq d_{\mu}$. If $a \in A$, let $A^{\lambda}(a)_{i j} \in \mathbb{C}$ be defined by the expansion

$$
a=\sum_{\lambda \in \hat{A}} \sum_{i, j=1}^{d_{\lambda}} A^{\lambda}(a)_{i j} e_{i j}^{\lambda}
$$

It follows from Theorem ??? that the maps

$$
\begin{array}{cccccccc}
A^{\lambda}: & A & \longrightarrow & M_{d_{\lambda}}(\mathbb{C}) \\
a & \longmapsto & A^{\lambda}(a)=\left(A^{\lambda}(a)_{i j}\right)
\end{array} \quad \text { and } \quad \chi^{\lambda}: \begin{array}{ccc}
A & \longrightarrow & \mathbb{C} \\
a & \longmapsto & \operatorname{Tr}\left(A^{\lambda}(a)\right),
\end{array} \quad \lambda \in \hat{A}
$$

are the irreducible representations and the irreducible characters of A, respectively. The homomorphisms A^{λ} depend on the choice of ϕ but the irreducible characters χ^{λ} do not. The weights of a trace \vec{t} on A are the constants $t_{\lambda}, \lambda \in \hat{A}$, defined by the expansion in ???. The trace \vec{t} is nondegenerate if and only if the t_{λ} are all nonzero.

Theorem 3.4. Let A be an algebra which is isomorphic to a direct sum of matrix algebras, indexed by $\lambda \in \hat{A}$. Let \vec{t} be a nondegenerate trace on A and let \langle,$\rangle be the corresponding bilinear$ form. Let $B=\{b\}$ be a basis of A and let $B^{*}=\left\{b^{*}\right\}$ be the dual basis to B with respect to \langle,$\rangle .$ Let $\chi^{\lambda}, \lambda \in \hat{A}$, be the irreducible characters of A, t_{λ} be the weights of \vec{t}, d_{λ} the dimensions of the irreducible representations, $\left\{e_{i j}^{\lambda}\right\}$ a set of matrix units of A, and A^{λ} the corresponding irreducible representations of A.
(a) (Fourier inversion formula)

$$
e_{i j}^{\lambda}=\sum_{b \in B} t_{\lambda} A_{j i}^{\lambda}\left(b^{*}\right) b
$$

(b) The minimal central idempotent z_{λ} in A indexed by $\lambda \in \hat{A}$ is given by

$$
z_{\lambda}=\sum_{b \in B} t_{\lambda} \chi^{\lambda}\left(b^{*}\right) b
$$

(c) (Orthogonality of characters) For all $\lambda, \mu \in \hat{A}$,

$$
\sum_{b \in B} \chi^{\lambda}\left(b^{*}\right) \chi^{\mu}(b)=\delta_{\lambda \mu} \frac{d_{\lambda}}{t_{\lambda}}
$$

Proof. (a) Since \vec{t} is nondegenerate, the equation $\vec{t}\left(e_{i j}^{\lambda}\right)=\sum_{\mu \in \hat{A}} t_{\mu} \chi^{\mu}\left(e_{i j}^{\lambda}\right)=t_{\lambda} \delta_{i j} \quad$ implies that

$$
\left\{\frac{e_{j i}^{\lambda}}{t_{\lambda}}\right\} \text { is the dual basis to }\left\{e_{i j}^{\lambda}\right\} \quad \text { with respect to }\langle,\rangle .
$$

Thus, by (???), $\quad A_{i j}^{\lambda}(a)=\frac{1}{t_{\lambda}}\left\langle a, e_{j i}^{\lambda}\right\rangle, \quad$ and so $\quad e_{i j}^{\lambda}=\sum_{b \in B}\left\langle e_{i j}^{\lambda}, b^{*}\right\rangle b=\sum_{b \in B} t_{\lambda} A_{j i}^{\lambda}\left(b^{*}\right) b$.
(b) By part (a), $\quad z_{\lambda}=\sum_{i=1}^{d_{\lambda}} e_{i i}^{\lambda}=\sum_{b \in B} t_{\lambda} \operatorname{Tr}\left(A^{\lambda}\left(b^{*}\right)\right) b$.
(c) By part (b), $\quad d_{\lambda} \delta_{\lambda \mu}=\chi^{\mu}\left(z_{\lambda}\right)=\sum_{b \in B} t_{\lambda} \chi^{\lambda}\left(b^{*}\right) \chi^{\mu}(b)$.

Example 1. Let $A=\bigoplus_{\lambda \in \hat{A}} M_{d_{\lambda}}(\mathbb{C})$.
(1) As a left A-module under the action of A by left multiplication

$$
A \cong \bigoplus_{\lambda \in \hat{A}}\left(A^{\lambda}\right)^{\oplus d_{\lambda}}
$$

where A^{λ} is the irreducible A-module of column vectors of length d_{λ}.
(2) As an (A, A) bimodule under the action of A by left and right multiplication

$$
A \cong \bigoplus_{\lambda \in \hat{A}} A^{\lambda} \otimes \overleftarrow{A}^{\lambda}
$$

where A^{λ} is the left A-module of column vectors of length d_{λ} and $\overleftarrow{A}^{\lambda}$ is th right A-module of row vectors of length d_{λ}.
(3) Let $a, b \in A$. If a acts on A by left multiplication and b acts on A by right multiplication then

$$
\operatorname{Tr}(a \otimes b)=\sum_{\lambda \in \hat{A}} \chi^{\lambda}(a) \chi^{\lambda}(b)
$$

where $\chi^{\lambda}, \lambda \in \hat{A}$, are the irreducible characters of A.
Example 2. Let G be a finite group and let $\mathbb{C} G$ be the group algebra of G. The trace of the regular representation of $\mathbb{C} G$ is given by

$$
\operatorname{tr}(g)=\left.\sum_{h \in G} g h\right|_{h}= \begin{cases}|G|, & \text { if } g=1 \\ 0, & \text { otherwise }\end{cases}
$$

So, (provided $|G| \neq 0$ in $\mathbb{C})$ the basis

$$
\left\{\frac{g^{-1}}{|G|}\right\}_{g \in G} \quad \text { is the dual basis to } \quad G
$$

with respect to the form \langle,$\rangle defined by tr. Since t r$ is nondegenerate

$$
\mathbb{C} G \cong \bigoplus_{\lambda \in \hat{G}} M_{d_{\lambda}}(\mathbb{C}),
$$

for some set \hat{G} and positive integers d_{λ}. Then

$$
\operatorname{tr}=\sum_{\lambda \in \hat{G}} d_{\lambda} \chi^{\lambda},
$$

where $\chi^{\lambda}, \lambda \in \hat{G}$, are the irreducible characters of G and, by (???),

$$
z_{\lambda}=\frac{1}{|G|} \sum_{g \in G} d_{\lambda} \chi^{\lambda}\left(g^{-1}\right) g, \quad \lambda \in \hat{G},
$$

are the minimal central idempotents in $\mathbb{C} G$. The orthogonality relation for characters of G (???) is

$$
\frac{1}{|G|} \sum_{g \in G} \chi^{\lambda}\left(g^{-1}\right) \chi^{\mu}(g)=\delta_{\lambda \mu}, \quad \text { for } \lambda, \mu \in \hat{G} .
$$

If $G^{\lambda}: \mathbb{C} G \rightarrow M_{d_{\lambda}}(\mathbb{C})$ are the irreducible representations of G then

$$
e_{i j}^{\lambda}=\frac{1}{|G|} \sum_{g \in G} d_{\lambda} G^{\lambda}\left(g^{-1}\right)_{j i} g, \quad \lambda \in \hat{G}, 1 \leq i, j \leq d_{\lambda},
$$

are a set of matrix units in $\mathbb{C} G$, i.e.

$$
e_{i j}^{\lambda} e_{k \ell}^{\mu}=\delta_{\lambda \mu} \delta_{k j} e_{\subset \ell}^{\lambda}
$$

and $\left\{e_{i j}^{\lambda} \mid \lambda \in \hat{G}, 1 \leq i, j \leq d_{\lambda}\right\}$ is a basis of $\mathbb{C} G$.
Let $g, h \in G$ and let g act on $\mathbb{C} G$ by left multiplication and let h act on $\mathbb{C} G$ by right multiplication. Then

$$
\operatorname{Tr}(g \otimes h)=\left.\sum_{k \in G} g k h\right|_{k}=\left.\sum_{k \in G} k h k^{-1}\right|_{g^{-1}}= \begin{cases}\operatorname{Card}\left(\mathcal{C}_{h}\right), & \text { if } h \text { is conjugate to } g^{-1}, \\ 0, & \text { otherwise },\end{cases}
$$

where \mathcal{C}_{h} is the conjugacy class of h. Thus, by (???),

$$
\sum_{\lambda \in \hat{G}} \chi^{\lambda}(g) \chi^{\lambda}(h)= \begin{cases}\operatorname{Card}\left(\mathcal{C}_{h}\right), & \text { if } h \text { is conjugate to } g^{-1}, \\ 0, & \text { otherwise },\end{cases}
$$

which is the second orthogonality relation for characters of G.
The elements

$$
c_{g}=\sum_{x \in \mathcal{C}_{g}} x
$$

are a basis of the center of $\mathbb{C} G$. Since $\left\{z_{\lambda} \mid \lambda \in \hat{G}\right\}$ is also a basis of $Z(\mathbb{C} G)$ we have that

$$
\operatorname{Card}(\hat{G})=\# \text { of conjugacy classes of } G,
$$

though there is no (known) natural bijection between the irreducible representations of G and the conjugacy classes of G.

It follows from ??? that

$$
|G|=\sum_{\lambda \in \hat{G}} d_{\lambda}^{2}
$$

Every trace \vec{t} on $\mathbb{C} G$ has a unique decomposition

$$
\vec{t}=\sum_{\lambda \in \hat{G}} t_{\lambda} \chi^{\lambda}, \quad t_{\lambda} \in \mathbb{C} .
$$

So, since every G-module is semisimple, its decomposition is determined by its character. So
Two G-modules are isomorphic if and only if they have the same character.
and

$$
\begin{aligned}
\operatorname{dim}(Z(\mathbb{C} G)) & =(\# \text { of irreducible representations of } G) \\
& =(\# \text { of conjugacy classes of } G)
\end{aligned}
$$

4. Centralizers.

Let A be an algebra and let M be an A-module. The centralizer or commutant of M is the algebra

$$
\operatorname{End}_{A}(M)=\{T \in \operatorname{End}(M) \mid T a=a T \text { for all } a \in A\}
$$

If M and N are A-modules then $\operatorname{Hom}_{A}(M, N)$ is a left $\operatorname{End}_{A}(M)$-module and a right $\operatorname{End} A_{A}(N)$ module.

Theorem 4.1. (Schur's Lemma) Let A be an algebra.
(1) Let A^{λ} be a simple A-module. Then $\operatorname{End}_{A}\left(A^{\lambda}\right)=\mathbb{C} \cdot \operatorname{Id}_{A^{\lambda}}$.
(2) If A^{λ} and A^{μ} are nonisomorphic simple A-modules then $\operatorname{Hom}_{A}\left(A^{\lambda}, A^{\mu}\right)=0$.

Proof. Let $T: A^{\lambda} \rightarrow A^{\mu}$ be a nonzero A-module homomorphism. Since A^{λ} is simple, ker $T=0$ and so T is injective. Since A^{μ} is simple, $\operatorname{im} T=A^{\mu}$ and so T is surjective. So T is an isomorphism. Thus we may assume that $T: A^{\lambda} \rightarrow A^{\lambda}$.
When A^{λ} is finite dimensional: Since \mathbb{C} is algebraically closed T has an eigenvector and a corresponding eigenvalue $\alpha \in \mathbb{C}$. Then $T-\alpha \cdot I d \in \operatorname{Hom}_{A}\left(A^{\lambda}, A^{\lambda}\right)$ and so $T-\alpha \cdot I d$ is either 0 an isomorphism. However, since $\operatorname{det}(T-\alpha \cdot I d)=0, T-\alpha \cdot I d$ is not invertible. So $T-\alpha \cdot I d=0$. So $T=\alpha \cdot I d$. So $\operatorname{End}_{A}\left(A^{\lambda}\right)=\mathbb{C} \cdot I d$.
When A^{λ} is countable dimensional: We shall show that there exists a $\lambda \in \mathbb{C}$ such that $T-\lambda \cdot \mathrm{Id}$ is not invertible. Suppose $T-\lambda$. Id is invertible for all $\lambda \in \mathbb{C}$. Then $p(T)$ is invertible for all polynomials $p(t) \in \mathbb{C}[t]$. So $p(T) / q(T)$ is well defined for all $p(t), q(t) \in \mathbb{C}[t]$.

Let $v \in A^{\lambda}$ be nonzero. Then the map

$$
\begin{array}{rlcc}
\mathbb{C}(t) & \longrightarrow & \operatorname{End}(V) & \longrightarrow
\end{array} \begin{aligned}
& V \\
& \frac{p(t)}{q(t)}
\end{aligned} \quad \longmapsto \frac{p(T)}{q(T)} \quad \longmapsto \quad \frac{p(T)}{q(T)} v .
$$

is injective. Since $\operatorname{dim} \mathbb{C}(t)$ is uncountable and $\operatorname{dim} V$ is countable thsi is a contradiction. So $T-\lambda \cdot$ Id is invertibel for some $\lambda \in \mathbb{C}$. Then the same proof as in the finite dimensional case shows that $T=\lambda \cdot$ Id.
If A^{λ} is unitary: Let

$$
A=\frac{T+T^{*}}{2} \quad \text { and } \quad B=\frac{T-T^{*}}{2 i}
$$

where T^{*} is defined by $\left\langle T v_{1}, v_{2}\right\rangle=\left\langle v_{1}, T^{*} v_{2}\right\rangle$ for all $v_{1}, v_{2} \in A^{\lambda}$. Then

$$
A=A^{*}, \quad B=B^{*}, \quad T=A+i B, \quad \text { and } \quad A, B, T \in \operatorname{Hom}_{A}\left(A^{\lambda}, A^{\lambda}\right) .
$$

Then the spectral theorem for self adjoint operators says that A and B can be diagonalized [Rudin, Thm. 12.2],
$A=\sum_{i} \lambda_{i} P_{i} \quad \operatorname{and} B=\sum_{j} \mu_{j} Q_{j}, \quad$ with $P_{i}^{2}=P_{i}, Q_{j}^{2}=Q_{j}, P_{i}, Q_{j} \in \operatorname{Hom}_{A}\left(A^{\lambda}, A^{\lambda}\right), \lambda_{i}, \mu_{j} \in \mathbb{C}$.
Then $P_{i} A^{\lambda}$ is a submodule of A^{λ}. So $P_{i} A^{\lambda}=A^{\lambda}$. So $A=\lambda \cdot$ Id.

Lemma 4.2. Suppose that V is a unitary representation. Then

$$
\operatorname{Hom}_{A}(V, V)=\mathbb{C} \cdot \operatorname{Id}_{V} \quad \text { implies that } \quad V \text { is irreducible. }
$$

Proof. Suppose that V is not irreducible. Then let $W \subseteq V$ be a sumodule of V. Let

$$
W^{\perp}=\{v \in V \mid\langle v, w\rangle=0, \text { for all } w \in W\} .
$$

Then W^{\perp} is a submodule since, if $v \in W^{\perp}$ and $w \in W$, then $\langle a v, w\rangle=\left\langle v, a^{*} w\right\rangle=0$ because $a^{*} w \in W$. Now, for Hilbert spaces, we have $V=W \oplus W^{\perp}$ and we can define a

$$
\begin{array}{rlll}
V & \xrightarrow{p} & V & \\
w & \longmapsto & w, & \text { if } w \in W \\
w^{\perp} & \longmapsto & 0, & \text { if } w \in W^{\perp},
\end{array}
$$

This map is a nonidentity A-module homomorphism. So $\operatorname{Hom}_{A}(V, V) \neq \mathbb{C} \cdot \operatorname{Id}$.

Theorem 4.3. Let A be an algebra. Let M be a semisimple A-module and set $Z=\operatorname{End}_{A}(M)$. Suppose that

$$
M \cong \bigoplus_{\lambda \in \hat{M}}\left(A^{\lambda}\right)^{\oplus m_{\lambda}}
$$

where \hat{M} is an index set for the irreducible A-modules A^{λ} which appear in M and the m_{λ} are positive integers.
(a) $Z \cong \bigoplus_{\lambda \in \hat{M}} M_{m_{\lambda}}(\mathbb{C})$.
(b) As an $(A \otimes Z)$-module

$$
M \cong \bigoplus_{\lambda \in \hat{M}} A^{\lambda} \otimes Z^{\lambda}
$$

where the $Z^{\lambda}, \lambda \in \hat{M}$, are the simple Z-modules.

Proof. Index the components in the decomposition of M by dummy variables ϵ_{i}^{λ} so that we may write

$$
M \cong \bigoplus_{\lambda \in \hat{M}} \bigoplus_{i=1}^{m_{\lambda}} A^{\lambda} \otimes \epsilon_{i}^{\lambda}
$$

For each $\lambda \in \hat{M}, 1 \leq i, j \leq m_{\lambda}$ let $\phi_{i j}^{\lambda}: A^{\lambda} \otimes \epsilon_{j} \rightarrow A^{\lambda} \otimes \epsilon_{i}$ be the A-module isomorphism given by

$$
\phi_{i j}^{\lambda}\left(m \otimes \epsilon_{j}^{\lambda}\right)=m \otimes \epsilon_{i}^{\lambda}, \quad \text { for } m \in A^{\lambda}
$$

By Schur's Lemma,

$$
\begin{aligned}
\operatorname{End}_{A}(M)=\operatorname{Hom}_{A}(M, M) & \cong \operatorname{Hom}_{A}\left(\bigoplus_{\lambda} \bigoplus_{j} A^{\lambda} \otimes \epsilon_{j}^{\lambda}, \bigoplus_{\mu} \bigoplus_{i} A^{\mu} \otimes \epsilon_{i}^{\mu}\right) \\
& \cong \bigoplus_{\lambda, \mu} \bigoplus_{i, j} \delta_{\lambda \mu} \operatorname{Hom}_{A}\left(A^{\lambda} \otimes \epsilon_{j}^{\lambda}, A^{\mu} \otimes \epsilon_{i}^{\mu}\right) \\
& \cong \bigoplus_{\lambda} \bigoplus_{i, j=1}^{m_{\lambda}} \mathbb{C} \phi_{i j}^{\lambda} .
\end{aligned}
$$

Thus each element $z \in \operatorname{End}_{A}(M)$ can be written as

$$
z=\sum_{\lambda \in \hat{M}} \sum_{i, j=1}^{m_{\lambda}} z_{i j}^{\lambda} \phi_{i j}^{\lambda}, \quad \text { for some } z_{i j}^{\lambda} \in \mathbb{C}
$$

and identified with an element of $\oplus_{\lambda} M_{m_{\lambda}}(\mathbb{C})$. Since $\phi_{i j}^{\lambda} \phi_{k l}^{\mu}=\delta_{\lambda \mu} \delta_{j k} \phi_{i l}^{\lambda}$ it follows that

$$
\operatorname{End}_{A}(M) \cong \bigoplus_{\lambda \in \hat{M}} M_{m_{\lambda}}(\mathbb{C})
$$

(b) As a vector space $Z^{\mu}=\operatorname{span}\left\{\epsilon_{i}^{\mu} \mid 1 \leq i \leq m_{\mu}\right\}$ is isomorphic to the simple $\oplus_{\lambda} M_{m_{\lambda}}(\mathbb{C})$ module of column vectors of length m_{μ}. The decomposition of M as $A \otimes Z$ modules follows since

$$
\left(a \otimes \phi_{i j}^{\lambda}\right)\left(m \otimes \epsilon_{k}^{\mu}\right)=\delta_{\lambda \mu} \delta_{j k}\left(a \otimes \epsilon_{i}^{\mu}\right), \quad \text { for all } m \in A^{\mu}, a \in A
$$

If A is an algebra then A^{op} is the algebra A except with the opposite multiplication, i.e.

$$
A^{\mathrm{op}}=\left\{a^{\mathrm{op}} \mid a \in A\right\} \quad \text { with } \quad a_{1}^{\mathrm{op}} a_{2}^{\mathrm{op}}=\left(a_{2} a_{1}\right)^{\mathrm{op}}, \quad \text { for all } a_{1}, a_{2} \in A
$$

Let left regular representation of A is the vector space A with A action given by left multiplication. Here A is serving both as an algebra and as an A-module. It is often useful to distinguish the two roles of A and use the notation \vec{A} for the A-module, i.e. \vec{A} is the vector space

$$
\vec{A}=\{\vec{b} \mid b \in A\} \quad \text { with } A \text {-action } \quad a \vec{b}=\overrightarrow{a b}, \quad \text { for all } a \in A, \vec{b} \in \vec{A}
$$

Proposition 4.4. Let A be an algebra and let \vec{A} be the regular representation of A. Then $\operatorname{End}_{A}(\vec{A}) \cong A^{\text {op }}$. More precisely,

$$
\operatorname{End}_{A}(\vec{A})=\left\{\phi_{b} \mid b \in A\right\}, \quad \text { where } \phi_{b} \text { is given by } \quad \phi_{b}(\vec{a})=\overrightarrow{a b}, \quad \text { for all } \vec{a} \in \vec{A} .
$$

Proof. Let $\phi \in \operatorname{End}_{A}(\vec{A})$ and let $b \in A$ be such that $\phi(\overrightarrow{1})=\vec{b}$. For all $\vec{a} \in \vec{A}$,

$$
\phi(\vec{a})=\phi(a \cdot \overrightarrow{1})=a \phi(\overrightarrow{1})=a \vec{b}=\overrightarrow{a b},
$$

and so $\phi=\phi_{b}$. Then $\operatorname{End}_{A}(\vec{A}) \cong A^{\text {op }}$ since

$$
\left(\phi_{b_{1}} \circ \phi_{b_{2}}\right)(\vec{a})=a \overrightarrow{b_{2} b_{1}}=\phi_{b_{2} b_{1}}(\vec{a}),
$$

for all $b_{1}, b_{2} \in A$ and $\vec{a} \in \vec{A}$.

5. Characterizing algebras isomorphic to $\bigoplus_{\lambda} M_{d_{\lambda}}(\mathbb{C})$

Theorem 5.1. Suppose that A is an algebra such that the regular representation \vec{A} of A is completely decomposable. Then A is isomorphic to a direct sum of matrix algebras, i.e.

$$
A \cong \bigoplus_{\lambda \in \hat{A}} M_{d_{\lambda}}(\mathbb{C}),
$$

for some set \hat{A} and some positive integers d_{λ}, indexed by the elements of \hat{A}.
Proof. If \vec{A} is completely decomposable then, by Theorem ???, $\operatorname{End}_{A}(\vec{A})$ is isomorphic to a direct sum of matrix algebras. By Proposition ??,

$$
A^{\mathrm{op}} \cong \bigoplus_{\lambda \in \hat{A}} M_{d_{\lambda}}(\mathbb{C})
$$

for some set \hat{A} and some positive integers d_{λ}, indexed by the elements of \hat{A}. The map

$$
\begin{array}{ccc}
\left(\oplus_{\lambda \in \hat{A}} M_{d_{\lambda}}(\mathbb{C})\right)^{\mathrm{op}} & \longrightarrow & \bigoplus_{\lambda \in \hat{A}} M_{d_{\lambda}}(\mathbb{C}) \\
a & \longmapsto & a^{t},
\end{array}
$$

where a^{t} is the transpose of the matrix a, is an algebra isomorphism. So A is isomorphic to a direct sum of matrix algebras.

Proposition 5.2. Let $A=\bigoplus_{\lambda \in \hat{A}} M_{d_{\lambda}}(\mathbb{C})$. Then the trace tr of the regular representation of A is nondegenerate.

Proof. As A-modules, the regular representation

$$
\vec{A} \cong \bigoplus_{\lambda \in \hat{A}}\left(A^{\lambda}\right)^{\oplus d_{\lambda}},
$$

where A^{λ} is the irreducible A-module consisting of column vectors of length d_{λ}. So the trace tr of the regular representation is given by

$$
\operatorname{tr}=\sum_{\lambda \in \hat{A}} d_{\lambda} \chi^{\lambda}
$$

where χ^{λ} are the irreducible characters of A. Since the d_{λ} are all nonzero the trace $t r$ is nondegenerate.

Theorem 5.3. (Maschke's theorem) Let A be an algebra such that the trace $t r$ of the regular representation of A is nondegenerate. Then every representation of A is completely decomposable.

Proof. Let B be a basis of A and let B^{*} be the dual basis of A with respect to the form $\langle\rangle:, A \times A \rightarrow$ \mathbb{C} defined by

$$
\left\langle a_{1}, a_{2}\right\rangle=\operatorname{tr}\left(a_{1} a_{2}\right), \quad \text { for all } a_{1}, a_{2} \in A
$$

The dual basis B^{*} exists because the trace $t r$ is nondegenerate.
Let M be an A-module. If M is irreducible then the result is vacuously true, so we may assume that M has a proper submodule N. Let $p \in \operatorname{End}(M)$ be a projection onto N, i.e. $p M=N$ and $p^{2}=p$. Let

$$
[p]=\sum_{b \in B} b p b^{*}, \quad \text { and } \quad e=\sum_{b \in B} b b^{*}
$$

For all $a \in A$,

$$
\operatorname{tr}(e a)=\sum_{b \in B} \operatorname{tr}\left(b b^{*} a\right)=\sum_{b \in B}\left\langle a b, b^{*}\right\rangle=\left.\sum_{b \in B} a b\right|_{b}=\operatorname{tr}(a),
$$

So $\operatorname{tr}((e-1) a)=0$, for all $a \in A$. Thus, since tr is nondegenerate, $e=1$.
Let $m \in M$. Then $p b^{*} m \in N$ for all $b \in B$, and so $[p] m \in N$. So $[p] M \subseteq N$. Let $n \in N$. Then $p b^{*} n=b^{*} n$ for all $b \in B$, and so $[p] n=e n=1 \cdot n=n$. So $[p] M=N$ and $[p]^{2}=[p]$, as elements of $\operatorname{End}(M)$.

Note that $[1-p]=[1]-[p]=e-[p]=1-[p]$. So

$$
M=[p] M \oplus(1-[p]) M=N \oplus[1-p] M
$$

and, by Proposition ??, $[1-p] M$ is an A-module. So $[1-p] M$ is an A-submodule of M which is complementary to M. By induction on the dimension of M, N and $[1-p] M$ are completely decomposable, and therefore M is completely decomposable.

Together, Theorems ???, ??? and Proposition ??? yield the following theorem.
Theorem 5.4. (Artin-Wedderburn) Let A be a finite dimensional algebra over \mathbb{C}. The following are equivalent:
(1) Every representation of A is completely decomposable.
(2) The trace of the regular representation of A is nondegenerate.
(3) The regular representation of A is completely decomposable.

Example 1. Let A be the algebra with basis $\{1, e\}$ and mulitplication given by $e^{2}=0$. Then

$$
\vec{t}: A \rightarrow \mathbb{C} \quad \text { given by } \quad \vec{t}(a+b e)=a+b
$$

is a nondegenerate trace on A. The regular representation of A is given by

$$
\vec{A}(1)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad \text { and } \quad \vec{A}(e)=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)
$$

and $\mathbb{C} e$ is the only submodule of \vec{A}. Thus, \vec{A} is not completely decomposable. The trace tr of the regular representation of A is given by

$$
\operatorname{tr}(a+b e)=2 a, \quad \text { for } a, b \in \mathbb{C}
$$

Theorem 5.5. (Burnside's Theorem) Let A be an algebra and let $M: A \rightarrow \operatorname{End}(M)$ be an irreducible representation of A. Then $M(A)=\operatorname{End}(M)$.

Proof. Clearly, $M(A) \subseteq \operatorname{End}(M)$ and M is both a simple $M(A)$-module and a simple $\operatorname{End}(M)$ module. As $\operatorname{End}(M)$-modules

$$
\overrightarrow{\operatorname{End}(M)} \cong M^{\oplus d}
$$

and so, by restriction, this is also true as an $M(A)$-module. Thus, by Schur's lemma,

$$
\operatorname{End}_{M(A)}(\overrightarrow{\operatorname{End}(M)})=M_{d}(\mathbb{C})
$$

Let us label the summands in the decomposition by dummy variables ϵ_{i},

$$
\overrightarrow{\operatorname{End}(M)}=\bigoplus_{i=1}^{d} M \otimes \epsilon_{i}, \quad \text { so that } \quad E_{i i}(\overrightarrow{\operatorname{End}(M)})=M \otimes \epsilon_{i}
$$

Now $\overrightarrow{M(A)} \subseteq \overrightarrow{\operatorname{End}(M)}$ is an $M(A)$ submodule of $\overrightarrow{\operatorname{End}(M)}$. However,
$E_{i i}(\overrightarrow{\operatorname{End}(M)}) \subseteq M \otimes \epsilon_{i} \quad$ and $\quad \overrightarrow{M(A)}=E_{11} \overrightarrow{M(A)} \oplus \cdots \oplus E_{d d} \overrightarrow{M(A)} \subseteq M \otimes \epsilon_{1} \oplus \cdots \oplus M \otimes \epsilon_{d}$.
Since M is a simple $M(A)$ module, each $E_{i i} \overrightarrow{M(A)}$ is isomorphic to M or 0 . So

$$
\overrightarrow{M(A)} \cong M^{\oplus k}, \quad \text { for some } 1 \leq k \leq d
$$

So the regular representation of $M(A)$ is semisimple and $M(A) \cong M_{k}(\mathbb{C})$. Since $\operatorname{dim}(M)=d$ and M is a simple module for $M(A)$ we have $M(A) \cong M_{d}(\mathbb{C})$. So $M(A)=\operatorname{End}(M)$.

Remark 1. We used Schur's lemma in a crucial way so we are assuming that \mathbb{C} is algebraically closed. In general we can say:

If M is a simple A-module then $M(A)=\operatorname{End}_{Z}(M)$ where $Z=\operatorname{End}_{A}(M)$.
The proof is similar to that given above and is called the Jacobson density theorem.
Example. Assume that A is a commutative algebra and let M be a simple A-module. Then $M(A)$ is commutative and $M(A)=\operatorname{End}(M) \cong M_{d}(\mathbb{C})$, where $d=\operatorname{dim}(M)$. However, $M_{d}(\mathbb{C})$ is commutative if and only if $d=1$. This shows that every irreducible representation of a commutative algebra is one dimensional.
Example 2. Explain what the error is in the following proof of Burnside's theorem: If M is an irreducible A-module then $M(A)=\operatorname{End}(M)$.

Proof. Let $\left\{m_{1}, \ldots, m_{d}\right\}$ be a basis of M. Since M is irreducible, for any i and j there is an $a \in A$ such that $M(a) m_{j}=m_{i}$. So the matrix $E_{j i} \in M(A)$ for all $1 \leq i, j \leq n$. So $\operatorname{End}(M) \subseteq M(A)$. So $M(A)=\operatorname{End}(M)$.

[^0]: * Research supported in part by National Science Foundation grant DMS-9622985.

