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1. Algebras and representations.

Algebras.

An algebra is a vector space (over C) with a multiplication such that A is a ring with identity,

i.e. there is a map A x A — A, (a,b) — ab, which is bilinear and satisfies the associative and

distributive laws. The following are examples of algebras:

(1) The group algebra of a group G is the vector space CG with basis G and with multiplication
forced by the multiplication in G (and the bilinearity).

(2) If M is a vector space (over C) then the space End(M) of C-linear transformations of M is
an algebra under the multiplication given by composition of endomorphisms.

(3) Given a basis B = {by,...,bq} of the vector space M the algebra End(M) can be idenitified
with the algebra My(C) of d x d matrices T' = (T3;)1<i,j,<a With entries in C via

d
Tbh; = Z b;Tjs, for t € End(M).
=1

Let A be an algebra. An ideal in A is a subspace I C A such that ar € I and ra € I, for all
a € Aand r € I. A minimal ideal of A is a nonzero ideal I which cannot be written as a direct sum
I =1 ® I, of nonzero ideals I; and Is of A. An idempotent is a nonzero element p € A such that
p?> = p. Two idempotents p;,ps € A are orthogonal if p1ps = pap1 = 0. A minimal idempotent is
an idempotent p that cannot be written as a sum p = p; + po of orthogonal idempotents p1, ps € A.
The center of A is
Z(A)={z€ A]az=zaforall a c A}.

A central idempotent is an idempotent in Z(A) and a minimal central idempotent is a central
idempotent z that cannot be written as a sum z = z; + 22 of orthogonal central idempotents z;
and zs.

A trace on A is a linear map t: A — C such that

-

f(alag) = t(azay), for all a1, as € A.
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A character of A is a trace on A. A trace ¢ on A is nondegenerate if for each b € A there is an
a € A such that t(ba) # 0. The radical of a trace t is

radt = {bc A | t(ba) =0 for all a € A.} (1.1)
Every trace £ on A determines a symmetric bilinear form (,): A x A — C given by
(ay,a2) = tlajas), for all a;,as € A. (1.2)
The form (,) is nondegenerate if and only if the trace t is nondegenerate and the radical
rad (,) ={a € A| (a,b) =0 for all b € A}

of the form (,) is the same as rad .

Lemma 1.3. Let t be a trace on A and let (,) be the bilinear form on A defined by the trace t,
as in 77. Let B be a basis of A. Let G = ({(b,b')) be the matrix of the form (,) with respect
to B. The following are equivalent:

bb'eB

(1) The trace t is nondegenerate.
(2) det G # 0.
(3) The dual basis B* to the basis B with respect to the form (,) exists.

Proof. (2) & (1): The trace t is degenerate if there is an element a € A, a # 0, such that t(ac) = 0
for all ¢ € B. If a; € C are such that

a= Z apb, then 0=(a,c)= Z ap (b, c)

beB beB

for all ¢ € B. So a exists if and only if the columns of G are linearly dependent, i.e. if an only if
G is not invertible.

(3) & (2): Let B* = {b*} be the dual basis to {b} with respect to (,) and let P be the change
of basis matrix from B to B*. Then

d*=> Pgb, and Gy =(b,d") =D Puclb,c) = (GP")..
beB deB

So P!, the transpose of P, is the inverse of the matrix G. So the dual basis to B exists if and only
if G is invertible, i.e. if and only if det G # 0. 1

Proposition 1.4. Let A be an algebra and let t be a nondegenerate trace on A. Define a symmetric
bilinear form (,): A x A — C on A by (a1, a3) = t(a1az), for all a;,as € A. Let B be a basis of A
and let B* be the dual basis to B with respect to ( , ). Let a € A and define

[a] = Z bab*.

beB

Then [a] is an element of the center Z(A) of A and [a] does not depend on the choice of the basis
B.
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Proof. Let ¢ € A. Then

cla] = Z cbab™ = Z Z(cb, d*)dab* = Z da Z(d*c, byb* = Z dad*c = [a]c,

beB beB deB deB beB deB

since (cb, d*) = t(cbd*) = t(d*cb) = (d*c,b). So [a] € Z(A).
Let D be another basis of A and let D* be the dual basis to D with respect to (,). Let
P = (de) be the transition matrix from D to B and let P~! be the inverse of P. Then

d= Z Papb and d* = Z(Pil)?;di)*’

beB beB
since
(d, J*> = <Z Pyyb, Z(P_I)Z,JB*> = Z de(P_1)5J5bE = 5dci~
beB beB b,beB
So

D dad =" Pubad (Pt = Y bab"d; = bab*.

deD deD beB ieB bbeB beB

So [a] does not depend on the choice of the basis B. 1

Representations.

An A-module is a vector space M (over C) with an A-action, i.e. a map A x M — M,
(a, m) +— am, which is bilinear and such that

lam=m and a1 (agm) = (ara2)m,

for all aj,ao € A and m € M (14 denotes the identity in the algebra A). A representation of A
is an A-module. A representation of a group G is a representation of the group algebra CG. The
character of an A-module M is the map y: A — C given by

x"(a) = Te(M(a)),  fora€ 4,

where M (a) is the linear transformation of M determined by the action of A and Tr(M (a)) is the
trace of M (a). An irreducible character of A is the character of an irreducible representation of A.
An A-module M gives rise to a map

A — End(M)

. M) (1.5)

where M (a) is the linear transformation of M determined by the action of a on M. This map is

linear and satisfies
M(14) = Idpy,

M(ayag) = M(ay)M (az),
for all a;,a2 € A, ie. A — End(M) is a homomorphism of algebras. (Given a basis B =

{b1,...,bq} of M the map A — End(M) can be identified with a map M: A — My(C).) Conversely,
an algebra homomorphism as in 77?7 and 7?77 determines an A-action on M by

am = M (a)m, foralla € A and m € M.
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Thus, the map M: A — End(M) and the A-module M are equivalent data. Historically, the
map M: A — End(M) was the representation and M was the A-module, but now the terms
representation and A-module are used interchangeably. This is the reason for the use of the letter
M, both for the A-module and the corresponding algebra homomorphism M: A — End(M).

A submodule of an A-module M is a subspace N C M such that an € N, for all ¢ € A and
n € N. An A-module M is simple or irreducible if it has no submodules except 0 and itself. The
direct sum of two A-modules M7 and Ms is the vector space M = M; & M, with A-action given
by

a(my,ms) = (amy,ams), for all a € A, mq € My and mo € Ms.

An A-module M is semisimple or completely decomposable if M can be written as a direct sum of

simple submodules. An A-module M is indecomposable if M cannot be written as a direct sum
M = M; & My of nonzero submodules M7 C M and My C M.

Here we need a reference to the reader to look at the examples in Chapter 2 etc.

Homomorphisms

Let M and N be A-modules. Then define
Homy (M, N) = {¢ € Hom(M, N) | ap(m) = ¢(am), for all a € A and m € M},

where Hom(M, N) is the set of C-linear transformations from M to N. The proof of the following
Proposition is identical to the proof of Proposition 777 except with a replaced by ¢.

Proposition 1.6. Let A be an algebra and let t be a nondegenerate trace on A. Define a symmetric
bilinear form (,): A x A — C on A by (ay,as) = t(a1az), for all a1,ay € A. Let B be a basis of
A and let B* be the dual basis to B with respect to (, ). Let M and N be A-modules and let
¢ € Hom(M, N). Define

6] = > beb”.

beB

Then [¢] € Homy (M, N) and [¢] does not depend on the choice of the basis B.

Direct sums of algebras

Proposition 1.7. Let A and B be algebras and let A, A € A, and B*, uE B, be the irreducible
representations of A and B, respectively. The irreducible representations of A® B are AN, X € A,
with A @ B action given by

(a,b)y)m = am, fora € A,be B, m e A*,
and B*, 1 € B, with A @ B action given by
(a,b)n = bn, fora€ A, be B, and n € B*.
Proof. The elements (1,0) and (0,1) in A @ B are central idempotents of A & B such that
(1,0)(0,1) = (0,0). If P is an A & B-module then

P =(1,00P & (0,1)P,
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and this is a decomposition as A @ B-modules. Since
(a7 b)(l,O)p = (a,O)(l,O)p, and (a, b)(07 l)p = (O,b)(O, 1)]?,

for all a € A, b € B, and p € P, the structure of (1,0)P is determined completely by the A-
action and the structure of (0,1)P is determined by the action of B. If P is a simple module then
P = (1,0)P or P = (0,1)P. In the first case P = A for some A € A and in the second P = B¥
for some p € B. 11

Similar arguments with the elements (1,0) and (0,1) in A @ B yield the following.

(1) If A and B are algebras then the ideals of A @ B are all of the form I & J where I is an ideal
of A and J is an ideal of B.

(2) If A and B are algebras then Z(A® B) = Z(A) & Z(B).
(3) If A and B are algebras and £ is a trace on A @ B then ¢ is given by

1?(@, b) = fA(a) + FB(b),

-

where £, is the trace on A given by t4(a) = t(a,0) and tp is the trace on B given by

Tensor products

Let M and N be vector spaces and let
B, ={m;} and B, ={n;}
be bases of M and N, respectively. The tensor product M ® N is the vector space with basis
Byeon = {m; ®nj | m; € Byr,n; € By}

Ifm=>3,¢cm; and n= Zj d;n;, then write

m®n = (Z cmu) ® Zdjnj = chd](ml ®7’LJ)
( J ,J
If A and Z are algebras the tensor product is the vector space A ® Z with multiplication
determined by
(a1 ® z1) (a2 ® z2) = ajas ® 2129, for all at,a2 € A, 21,29 € Z.
If M and N are vector spaces then
End(M ® N) = End(M) ® End(N) as algebras.

This equality can be expressed in terms of matrices by choosing bases {m1,...,m,} and {ny,...,ng}
of M and N, respectively. The End(M) is identified with M,.(C) and End(N) is identified with
M,(C) by

Eijm; =m; andFEyeny = ng, for1 <i,j<randl1<k,/f<s.
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Then
(Eij ® Eke)(mj ® ne) = Eijjmj ® Egene = m; @ ng.

Use the (ordered) basis
{m1 @nq,...m1 @Ng, M2 @N1,...,M2 @ Ng,...,Myp @N1,..., My QNg}

of M®N to identify End(M ® N) with M, s(C). Then, if a = (a;;) € M, (C) and b = (bye) € M,(C)
then a ® b is the rs x rs matrix

antb aigb - apb

az1b ageb -+ azb
a®b=

ar1b ar2b - apb

Theorem 1.8. Let A and B be algebras. Let A*, X € A, be the simple A-modules and let B*,
u € B, be the simple B-modules. The simple A @ B-modules are

AA@B" MNeA pueB, where (a®b)(m®n)=am® bn,
fora € A,be B, m € A\, n € B*.

Proof. There are two things to show:
(1) A* @ B" is a simple A ® B-module, R X
(2) If P is a simple A ® B-module then P = A* ® B* for some A\ € A and u € B.
(1) By Burnside’s theorem End(A*) = A*(A) and End(B*) = B*(B) and therefore

End(A* ® B") = End(A*) @ End(B") = A*(A) ® B*(B) = (A* ® B*)(A® B).

So A* ® B* has no submodules. So A* ® B* is simple.

(2) Let P be a simple (A ® B)-module. Let A* be a simple A-submodule of P and let B* be a
simple B-submodule of Hom (A%, P). We claim that A* ® B* = P.
Consider the (A ® B)-module homomorphism

d: A @B* — A ®@Homp(AMP) — P
m® ¢ —  ¢(m).

This map is nonzero since the injection ¢: A* < P is a nonzero element of Hom 4 (A*, P). Since
A* @ B*) is simple ker ® = 0 and since P is simple im® = P. So A* @ B* = P. |
2. The algebra M,(C).
Let A = M4(C) be the algebra of d x d matrices with entries from C. Set
E;; = the matrix with 1 in the (7, j) entry and all other entries 0.
Then {E;; | 1 <4,j <d} is a basis of A and

E;jEy = 0j1Fy, 1<4,j5,k, 1 <d,
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describes the multiplication in A.

Theorem 2.1. Let My(C) be the algebra of d x d matrices with entries from C.
(a) Up to isomorphism, there is only one irreducible representation M of My(C).
(b) dim(M) = d.

(c) The character x™: A — C of M is given by

M (a) = Tr(a), for all a € A,

where Tr(a) is the trace of the matrix a.

(d) The irreducible representation M is the vector space
M = {(Cl,...,cd)t | c; € C}

of column vectors of length d with A-action given by left multiplication, or, equivalently, M

is given by the map
M: A — My(C)

a +— a,

Proof. There are two things to show:
(1) M, as defined in (d), is a simple A-module, and
(2) If C is a simple A-module then C' = M.

(1) Let €; be the column vector which has 1 in the ith entry and 0 in all other entries. The set

{€1,...,€q} is a basis of M. Let N C M be a nonzero submodule of M and let n = Z?Zl n;€; be
a nonzero vector in N. Then n; # 0 for some j and so

1
e, = —Epn € N, forall 1 <k <d.
nj
Thus N = M, since N contains a basis of M.

(2) Let C be a simple A-module and let ¢ be a nonzero vector in C. Since ¢ = Id-¢c = Z?Zl E;ic#0,
Ejjc# 0 for some j. Define an A-module homomorphism by

o M — C
€ —— Ejje.

Since ¢(€j) # 0, ker ¢ # 0. Since M is simple, ker ¢ = M and so ¢ is injective. Since im¢ # 0 and
C is simple, im¢ = C and so ¢ is surjective. So ¢ is an isomorphism and C' = M. 1

Proposition 2.2. Let M;(C) be the algebra of d x d matrices with entries from C.
(1) The only ideals of My4(C) are 0 and M,4(C).

(2) Z(M4(C)) = C-1d and Id is the only central idempotent in M4(C).

(3) Up to constant multiples, the trace Tr: M4(C) — C given by

d
Tr(a) = Z Qi for all a = (a;5) € M4(C),
i=1
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is the unique trace on My(C).

Proof. Let E;; denote the matrix in Mg(C) which has a 1 in the (¢, j) entry and 0 everywhere else.

(1) Let I be a nonzero ideal of My(C) and let r = (r;;) € I, r # 0. Let r;; be a nonzero entry of
r. Then

1
fEkirEjl =Fy €1, forall 1 < k.l <d.

Tij
So I contains a basis of My(C). So I = My(C).
(2) Clearly CId C Z(Mg(C). Let z = (2;;) € Z(M4(C)). If i # j then
ZijEij = EiiZEjj = ZEiiEjj =0.
So z;; = 0 if ¢ # j. Further
2l = Fijz By = EpzFyEy = 211 By,

80 z;; = z11 for all 1 <@ <d. So z = z111d. So Z(M4(C)) C CId. So Z(M4(C)) = CId.
(3) Let x: M4(C) — C be a trace on My(C). If a = (a;5) € Mq(C) then

X(EiaEj;) = aijx(Eij) = aijX(Ei1 E1j) = aijx(E1jEi) = a;;0i;xX(E11)-
Thus

d d d
X(CL) =X (Z E“) a ZEjj = Z aijéijx(En) = X(Ell)TI'(CL).
i=1 j=1 ij=1

So x is a multiple of the trace Tr. I

3. The algebra @, ; My, (C).
Let A be a finite set and let dy be positive integers indexed by the elements of A. Let

A = @Mdk((c)7

A€A

be the algebra of block diagonal matrices with blocks My, (C). Let Ef] be the matrix which has a

1 in the (4, 7) entry of the Ath block and 0 everywhere else. Then {Ef; | A e A1<i,j,< dy}isa
basis of A and the relations
E}EL = 65,045 E)

determine the multiplication in A.
The following theorems are consequences of Theorems 77 and Proposition 777.

Theorem 3.1. Let A be a finite set and let dy be positive integers indexed by the elements of A.

Let
A= P My, (C),

A€A

be the algebra of block diagonal matrices with blocks Mg, (C).
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(1) The irreducible representations A of A are indexed by the elements of A.
(2) dim(A*) = dy.
(3) The character x*: A — C of A* is given by

XMNa) = Tr(AMa),  a€A,

where A*(a) is the Ath block of the matrix a.
(4) The irreducible representation A* is given by the map

AN A — My (C)
o —  ANa),

where A*(a) is the Ath block of the matrix A, or, equivalently, by the vector space A* of
column vectors of length dy and A-action given by

am = A*(a)m, fora € A and m € A*.

Theorem 3.2. Let A be a finite set and let dy be positive integers indexed by the elements of A.
Let
A= P My, (C),
A€A

be the algebra of block diagonal matrices with blocks My, (C). If a € A let A*(a) denote the Ath
block of the matrix a. Let Ef} be the matrix which has a 1 in the (i, j) entry of the Ath block and
0 everywhere else.

(1) The minimal ideals of A are given by
P={acA|A*@)=0forall p# X}, €A,
and every ideal of A is of the form I = @ I*, for some subset S C A.

A€ES
(2) The minimal central idempotents of A are

dx
= Z Ez);u A€ A7
i=1
and {zy | A € A} is a basis of the center Z(A) of A.
(3) The irreducible characters x*, A € A, of A are given by
x*Ma) = Tr(ANa)), acA,
and every trace t: A — C on A can be written uniquely in the form

f= Z tAXA, ty € C.
AeA
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Let A be an algebra which is isomorphic to a direct sum of matrix algebras and fix an isomor-
phism
¢: A= P Mg, (C). (3.3)

A€A

The elements
e =¢ N Ey),  AeA, 1<i,j<dy,

are matriz units in A, i.e. {ef‘j | A€ A1<i,j< dy)} is a basis of A and
A A
ez‘je/l:l = Oapdijeq,

for all \, 4 € A,1< 1,7 <dx, 1<k, 1<d, IfacA,let A*(a)i]- € C be defined by the expansion

d
a = Z z\: A’\(a)ijef‘j.

AeAnj=1
It follows from Theorem 777 that the maps

AN A — My, (C) XA — C A
@ ANa) = (Aa)y) M @ Te(AMa), €N

are the irreducible representations and the irreducible characters of A, respectively. The homo-
morphisms A* depend on the choice of ¢ but the irreducible characters x* do not. The weights
of a trace ¢ on A are the constants £y, A € A, defined by the expansion in ???. The trace t is
nondegenerate if and only if the ¢, are all nonzero.

Theorem 3.4. Let A be an algebra which is isomorphic to a direct sum of matrix algebras,
indexed by A € A. Let i be a nondegenerate trace on A and let (,) be the corresponding bilinear
form. Let B = {b} be a basis of A and let B* = {b*} be the dual basis to B with respect to (,).
Let x*, \ € A, be the irreducible characters of A, t5 be the weights of t, dy the dimensions of the
irreducible representations, {ef‘j} a set of matrix units of A, and A the corresponding irreducible
representations of A.

(a) (Fourier inversion formula)

e = Y taAAN(b")b.

beB
(b) The minimal central idempotent zy in A indexed by A € A is given by

ZN = Z t)\X)\(b*)b.

beB

(¢) (Orthogonality of characters) For all \, i € A,

dx
ty

> M) (0) = b

beB
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Proof. (a) Since t is nondegenerate, the equation f(e%) = Z tux“(el’-\j) =t26;; implies that

,uEA

e?i . . A .
. is the dual basis to {eij} with respect to ().
A

1 A

Thus, by (7?7), A}(a) = - —(a,e};), andso e}y = (e}, b)b=> tyA}(b*)b
beB beB
(b) By part (a), 2\ —Ze“ D A Tr(AMNb)b.
beB
(c) By part (b), dadau = x"(22) = D_ tax (b")x"(b). B
beB

Ezample 1. Let A =D, 4 Ma, (C).
(1) As a left A-module under the action of A by left multiplication

A= @,

AcA

where A* is the irreducible A-module of column vectors of length d.
(2) As an (A, A) bimodule under the action of A by left and right multiplication

A%@A%@XA,

A€A

A
where A* is the left A-module of column vectors of length dy and A" is th right A-module of
row vectors of length d.

(3) Let a,b € A. If a acts on A by left multiplication and b acts on A by right multiplication then

= > xXMax ()

A€A

where x*, A € /l, are the irreducible characters of A.

Ezample 2. Let G be a finite group and let CG be the group algebra of GG. The trace of the regular
representation of CG is given by

G|, ifg=1,
Z ghlh { 0, otherwise.
So, (provided |G| # 0 in C) the basis

1
{TG]} is the dual basis to G
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with respect to the form (,) defined by tr. Since tr is nondegenerate

CG = P My, (C)
xeG

for some set (@ and positive integers dy. Then

tr = Z dax>,

\e@

where x*, A € G, are the irreducible characters of G and, by (777),

Zd/\X 1 g9, )\Gé,

gEG

are the minimal central idempotents in CG. The orthogonality relation for characters of G (777)
is
71 A
E = Oxu, for A\, u € G.

gelG

If G*:CG — My, (C) are the irreducible representations of G then
eij \G| Z d\GMg™Y)jig, AeG1<i,j<dy,
geG

are a set of matrix units in CG, i.e.
A
ez] eké 5*#5’W€C€

and {e | A e G,1<1i,j <dy} is a basis of CG.
Let g,h € G and let g act on CG by left multiplication and let h act on CG by right multipli-
cation. Then

1 Card(Cp,), if h is conjugate to g~ 1,
g ®h) kengkh}k kez(}khk | o { 0, otherwise,

where Cj, is the conjugacy class of h. Thus, by (777),

A Ay ) Card(Cy), if his conjugate to g71,
Z X (h) = {0, otherwise,

\e@

which is the second orthogonality relation for characters of G.
The elements
(=Y s

z€Cy

are a basis of the center of CG. Since {zy | A € G} is also a basis of Z(CG) we have that

Card(G ) # of conjugacy classes of G,
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though there is no (known) natural bijection between the irreducible representations of G' and the
conjugacy classes of G.
It follows from 777 that

Gl =" d3.

Ae@

Every trace ¢ on CG has a unique decomposition

t= Z t)\XA, ty € C.
\eG

So, since every G-module is semisimple, its decomposition is determined by its character. So
Two G-modules are isomorphic if and only if they have the same character.

and

dim(Z(CG)) = (# of irreducible representations of G)
= (# of conjugacy classes of G).

4. Centralizers.

Let A be an algebra and let M be an A-module. The centralizer or commutant of M is the
algebra
Ends (M) ={T € End(M) | Ta = aT for all a € A}.

If M and N are A-modules then Hom (M, N) is a left End 4 (M )-module and a right End4(N)-
module.

Theorem 4.1. (Schur’s Lemma) Let A be an algebra.
(1) Let A* be a simple A-module. Then End4(A*) = C - Idyx.
(2) If A* and A* are nonisomorphic simple A-modules then Hom 4 (A*, A*) = 0.

Proof. Let T: A* — A" be a nonzero A-module homomorphism. Since A is simple, ker 7 = 0 and
so T is injective. Since A* is simple, imT = A* and so T is surjective. So T is an isomorphism.
Thus we may assume that T: A — A*.

When A* is finite dimensional: Since C is algebraically closed T has an eigenvector and a corre-
sponding eigenvalue o € C. Then T — o - Id € Homy(A*, A*) and so T — « - Id is either 0 an
isomorphism. However, since det(T' — - Id) = 0, T'— « - Id is not invertible. So T'— « - Id = 0.
SoT = a-1Id. So Endy(A*) = C - Id.

When A* is countable dimensional: We shall show that there exists a A € C such that 7 — X - Id
is not invertible. Suppose T'— X - Id is invertible for all A € C. Then p(T) is invertible for all
polynomials p(t) € C[t]. So p(T)/q(T) is well defined for all p(t), q(t) € C[¢].

Let v € A* be nonzero. Then the map

C

—~

t) — End(V) — Vv
p(T) p(T)

— —_— —_— —0

q(T) q(T)

t
t

—

S

—~
~—|

q
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is injective. Since dim C(t¢) is uncountable and dimV is countable thsi is a contradiction. So
T — X-1d is invertibel for some A € C. Then the same proof as in the finite dimensional case shows
that T'= X -1d.

If A is unitary: Let

_T+T T-T*

5 and B = 57

where T* is defined by (Twy,ve) = (v1, T*vy) for all v, vy € A*. Then

A

A= A%, B = B*, T=A+iB, and A, B,T € Homy, (AN, A%).

Then the spectral theorem for self adjoint operators says that A and B can be diagonalized [Rudin,
Thm. 12.2],

A=>"XNP  andB=)» p;Q;,  with P? =P, Q? =Q;, P,,Q; € Homa(A*, A*), A;, p; € C.
i J
Then P;A* is a submodule of A*. So P,A* = A*. So A= \-1d. 1

Lemma 4.2. Suppose that V' is a unitary representation. Then

Homu4(V, V) =C-1dy implies that V is irreducible.

Proof. Suppose that V is not irreducible. Then let W C V be a sumodule of V. Let
Wt ={veV | ({vw) =0, for all w € W}.

Then W+ is a submodule since, if v € W+ and w € W, then (av,w) = (v,a*w) = 0 because
a*w € W. Now, for Hilbert spaces, we have V =W @ W= and we can define a

v v
W o w, ifweW,
wt — 0, if we W+,

This map is a nonidentity A-module homomorphism. So Hom,4(V,V) # C-1d. 1

Theorem 4.3. Let A be an algebra. Let M be a semisimple A-module and set Z = End4(M).

Suppose that
M= @y,
AeM

where M is an index set for the irreducible A-modules A which appear in M and the m, are
positive integers.

(a) 2= @ My, (C).

AeM
(b) As an (A ® Z)-module

M = @ AN @ 7,
AEN
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where the Z*, \ € M, are the simple Z-modules.
Proof. Index the components in the decomposition of M by dummy variables € so that we may

write
mx
M= P Haree.

Aenr =1
For each A € M, 1 < 1,7 < my let d)f‘j: A* ® e; — A ® ¢; be the A-module isomorphism given by
d)zf\j(m@e])-‘):m@ef‘, for m € A*.
By Schur’s Lemma,

End (M) = Homu (M, M) = Homy [ PP A e e, PP A" ® €
A 7 " 1

o @@5)\uHOmA(A/\ ® 6;\,A# ® €l)

A

=D P Coiy.

A =1
Thus each element z € End4 (M) can be written as
mx
— PYSY A
z= E g 25 Piss for some z7; € C,
AeM bj=1

and identified with an element of @&y M,,, (C). Since qbf‘jqﬁﬁl =0 ,\uéjkgb;\l it follows that

Enda(M) = @ My, (C).
xeM

(b) As a vector space Z* = span{e!’ | 1 < i < m,} is isomorphic to the simple ®M,,, (C)
module of column vectors of length m,,. The decomposition of M as A ® Z modules follows since

(a®¢f‘j)(m®eg):6,\M5jk(a®ef), for all m € A", a € A, ]

If A is an algebra then A°P is the algebra A except with the opposite multiplication, i.e.
A% ={a? | a € A} with  ajPas® = (a2a1)°P, for all aj, as € A.
Let left regular representation of A is the vector space A with A action given by left multiplication.

Here A is serving both as an algebra and as an A-module. It is often useful to distinguish the two
roles of A and use the notation A for the A-module, i.e. A is the vector space

A={b|be A} with A-action ab = ab, forallae A, be A.
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Proposition 4.4. Let A be an algebra and let A be the regular representation of A. Then

—,

End(A) & A°P. More precisely,

—,

Enda(A) = {¢p | be A}, where ¢y, is given by ¢p(@) = ab, forallde A.

—,

Proof. Let ¢ € End4(A) and let b € A be such that ¢(I) = b. For all @ € A,

—,

6(@) = ¢(a- 1) = ag(1) = ab = ab,

—,

and so ¢ = ¢p. Then End4(A) = A°P since

(6n, © 65,)(@) = ababy = Gy, (@),

for all by,by € Aand @€ A. B

5. Characterizing algebras isomorphic to &, M, (C)

Theorem 5.1. Suppose that A is an algebra such that the regular representation A of A is
completely decomposable. Then A is isomorphic to a direct sum of matrix algebras, i.e.

A= P My, (C),

A€A

for some set A and some positive integers dy, indexed by the elements of A.

-,

Proof. If A is completely decomposable then, by Theorem ???, End A(A) is isomorphic to a direct
sum of matrix algebras. By Proposition 77,

A% = (B Mg, (C),
A€A

for some set A and some positive integers dy, indexed by the elements of A. The map

(®AGA de((c))op - GBAE.A ]twdx((c)

a — a’,

where a® is the transpose of the matrix a, is an algebra isomorphism. So A is isomorphic to a
direct sum of matrix algebras. I

Proposition 5.2. Let A =D, ; Ma, (C). Then the trace tr of the regular representation of A is
nondegenerate.

Proof. As A-modules, the regular representation

Az P(AY)Fh,

A€A
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where A* is the irreducible A-module consisting of column vectors of length dy. So the trace tr of
the regular representation is given by

tr = Z d)\X)\,

AcA

where x* are the irreducible characters of A. Since the dy are all nonzero the trace tr is nonde-
generate. i

Theorem 5.3. (Maschke’s theorem) Let A be an algebra such that the trace tr of the regular
representation of A is nondegenerate. Then every representation of A is completely decomposable.

Proof. Let B be a basis of A and let B* be the dual basis of A with respect to the form (,): Ax A —
C defined by

(a1, a2) = tr(araz), for all a1, as € A.
The dual basis B* exists because the trace tr is nondegenerate.

Let M be an A-module. If M is irreducible then the result is vacuously true, so we may
assume that M has a proper submodule N. Let p € End(M) be a projection onto N, i.e. pM = N

and p? = p. Let
[p] = z bpb™, and e= Z bb*.

beB beB
For all a € A,
tr(ea) = Ztr(bb*a) = Z(ab, b*) = Z ab‘b = tr(a),
beB beB beB

So tr((e — 1)a) = 0, for all a € A. Thus, since tr is nondegenerate, e = 1.

Let m € M. Then pb*m € N for all b € B, and so [pjm € N. So [p]M C N. Let n € N. Then
pb*n =b*n for all b € B, and so [pjn =en =1-n=n. So [p|M = N and [p]? = [p], as elements of
End(M).

Note that [1 —p] =[1] — [p] =e—[p] =1 —[p]. So

M =[pIM & (1—-[ph)M = N & [1 - p|M,

and, by Proposition ??, [1 — p|M is an A-module. So [1 — p]M is an A-submodule of M which
is complementary to M. By induction on the dimension of M, N and [1 — p|M are completely
decomposable, and therefore M is completely decomposable. 1

Together, Theorems 777, 777 and Proposition 777 yield the following theorem.

Theorem 5.4. (Artin-Wedderburn) Let A be a finite dimensional algebra over C. The following
are equivalent:

(1) Every representation of A is completely decomposable.
(2) The trace of the regular representation of A is nondegenerate.

(3) The regular representation of A is completely decomposable.

Example 1. Let A be the algebra with basis {1, e} and mulitplication given by e? = 0. Then

A —C given by tla+be)=a+b
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is a nondegenerate trace on A. The regular representation of A is given by

A’(1):<(1] ?) and A’(e):<8 (1])

and Ce is the only submodule of A. Thus, A is not completely decomposable. The trace tr of the
regular representation of A is given by

tr(a + be) = 2a, for a,b € C.

Theorem 5.5. (Burnside’s Theorem) Let A be an algebra and let M: A — End(M) be an
irreducible representation of A. Then M(A) = End(M).

Proof. Clearly, M(A) C End(M) and M is both a simple M (A)-module and a simple End (M )-
module. As End(M)-modules

End(M) = M®?,
and so, by restriction, this is also true as an M (A)-module. Thus, by Schur’s lemma,
——
EndM(A) (End(M)) = Md((C)

Let us label the summands in the decomposition by dummy variables ¢;,

d
End(M) =@M @e;,  sothat  Eyu(End(M))=M®e:.
i=1

_
Now M(A) C End(M) is an M(A) submodule of End(M). However,
—_— —_— —_ —
E;;(End(M)) C M ®¢; and M(A)=FEn1MA)@-- ®EuuM(A) CMRe @M RQe,.
Since M is a simple M (A) module, each E;; M (A) is isomorphic to M or 0. So
—_—
M(A)%’M@k, for some 1 < k < d.

So the regular representation of M(A) is semisimple and M (A) = M, (C). Since dim(M) = d and
M is a simple module for M (A) we have M(A) = My4(C). So M(A) =End(M). I

Remark 1. We used Schur’s lemma in a crucial way so we are assuming that C is algebraically
closed. In general we can say:

If M is a simple A-module then M (A) = Endz (M) where Z = End 4 (M).
The proof is similar to that given above and is called the Jacobson density theorem.
Ezxample. Assume that A is a commutative algebra and let M be a simple A-module. Then
M(A) is commutative and M(A) = End(M) = M4(C), where d = dim(M). However, M4(C) is
commutative if and only if d = 1. This shows that every irreducible representation of a commutative
algebra is one dimensional.

Example 2. Explain what the error is in the following proof of Burnside’s theorem: If M is an
irreducible A-module then M(A) = End(M).

Proof. Let {mq,...,mq} be a basis of M. Since M is irreducible, for any ¢ and j there is an a € A
such that M (a)m; = m;. So the matrix E;; € M(A) for all 1 <i,j <n. So End(M) C M(A). So
M(A) =End(M). 1



