Symmetric functions: Definition of the Schur functions
 Lecture Notes

Arun Ram*
Department of Mathematics
University of Wisconsin-Madison
Madison, WI 53706
ram@math.wisc.edu

Version: February 27, 2004

1. The $G L_{n}(\mathbb{C})$ case

The following fundamental example motivates the general case.
Let $\varepsilon_{1}, \ldots, \varepsilon_{n}$ be the \mathbb{Z}-basis of $\mathbb{Z}^{n}=\left\{\left(\lambda_{1}, \ldots, \lambda_{n}\right) \mid \lambda_{i} \in \mathbb{Z}\right\}$ given by $\varepsilon_{i}=(0, \ldots, 0,1,0, \ldots, 0)$, with the 1 in the i th entry, so that

$$
\begin{array}{rlrl}
P & =\mathbb{Z}^{n} & =\mathbb{Z}-\operatorname{span}\left\{\varepsilon_{1}, \ldots, \varepsilon_{n}\right\} \\
\text { and let } \quad P^{+} & =\{\lambda & \left.=\lambda_{1} \varepsilon_{1}+\cdots+\lambda_{n} \varepsilon_{n} \in \mathbb{Z}^{n} \mid \lambda_{1} \geq \cdots \geq \lambda_{n}\right\}, \tag{1.1}\\
\text { and } \quad P^{++} & =\left\{\lambda=\lambda_{1} \varepsilon_{1}+\cdots+\lambda_{n} \varepsilon_{n} \in \mathbb{Z}^{n} \mid \lambda_{1}>\cdots>\lambda_{n}\right\} .
\end{array}
$$

Then P^{+}is a set of representatives of the orbits of the action of the symmetric group S_{n} on \mathbb{Z}^{n} given by permuting the coordinates,

$$
\begin{equation*}
w \varepsilon_{i}=\varepsilon_{w(i)}, \quad \text { for } w \in S_{n}, 1 \leq i \leq n \tag{1.2}
\end{equation*}
$$

There is a bijection

$$
\begin{array}{rll}
P^{+} & \longrightarrow & P^{++} \tag{1.3}\\
\lambda & \longmapsto & \rho+\lambda
\end{array} \quad \text { where } \quad \rho=(n-1) \varepsilon_{1}+(n-2) \varepsilon_{2}+\cdots+\varepsilon_{n-1}
$$

The group algebra of P is

$$
\begin{equation*}
\mathbb{Z}[P]=\mathbb{Z}-\operatorname{span}\left\{x^{\lambda} \mid \lambda \in \mathbb{Z}^{n}\right\} \quad \text { with } \quad x^{\lambda} x^{\mu}=x^{\lambda+\mu}, \quad \text { for } \lambda, \mu \in \mathbb{Z}^{n} \tag{1.4}
\end{equation*}
$$

For $1 \leq i \leq n$ write

$$
x_{i}=x^{\varepsilon_{i}} \quad \text { so that } \quad x^{\lambda}=x_{1}^{\lambda_{1}} \cdots x_{n}^{\lambda_{n}} \quad \text { for } \lambda=\lambda_{1} \varepsilon_{1}+\cdots+\lambda_{n} \varepsilon_{n}
$$

and $\mathbb{Z}[P]=\mathbb{Z}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$. The action of S_{n} on \mathbb{Z}^{n} induces an action of S_{n} on $\mathbb{Z}[P]$ given by

$$
\begin{equation*}
w x^{\lambda}=x^{w \lambda}, \quad \text { for } w \in S_{n}, \lambda \in \mathbb{Z}^{n} \tag{1.5}
\end{equation*}
$$

[^0]so that
\[

$$
\begin{equation*}
w x_{i}=x_{w(i)}, \quad \text { for } w \in S_{n} \text { and } 1 \leq i \leq n \tag{1.6}
\end{equation*}
$$

\]

The ring of symmetric functions is

$$
\begin{align*}
\mathbb{Z}[P]^{S_{n}} & =\mathbb{Z}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]^{S_{n}} \\
& =\left\{f \in \mathbb{Z}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right] \mid f\left(x_{w(1)}, \ldots, x_{w(n)}\right)=f\left(x_{1}, \ldots, x_{n}\right) \text { for all } w \in S_{n}\right\} \tag{1.7}
\end{align*}
$$

The orbit sums, or monomial symmetric functions, are

$$
m_{\lambda}=\sum_{\gamma \in S_{n} \lambda} x^{\gamma}, \quad \text { for } \lambda \in P^{+}
$$

where $S_{n} \lambda$ is the orbit of λ under the action of S_{n}. Then

$$
\begin{equation*}
\left\{m_{\lambda} \mid \lambda \in P^{+}\right\} \quad \text { is a } \mathbb{Z} \text {-basis of } \mathbb{Z}[X]^{S_{n}} . \tag{1.8}
\end{equation*}
$$

The set of skew polynomials is

$$
\mathbb{Z}[P]^{\epsilon}=\left\{g \in \mathbb{Z}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right] \mid w g=\operatorname{det}(w) g \text { for all } w \in S_{n}\right\}
$$

If $f \in \mathbb{Z}[P]_{n}^{S}$ and $g \in \mathbb{Z}[P]^{\epsilon}$ then $f g \in \mathbb{Z}[P]^{\epsilon}$ and so $\mathbb{Z}[P]^{\epsilon}$ is a $\mathbb{Z}\left[X_{n}\right]^{S_{n}}$-module. Let ϵ be the element of the group algebra of S_{n} given by

$$
\begin{equation*}
\epsilon=\sum_{w \in S_{n}} \operatorname{det}(w) w, \tag{1.9}
\end{equation*}
$$

and define

$$
\begin{equation*}
a_{\mu}=\epsilon\left(x^{\mu}\right)=\sum_{w \in S_{n}} \operatorname{det}(w) w x^{\mu}, \quad \text { for } \mu=\left(\mu_{1}, \ldots, \mu_{n}\right) \in \mathbb{Z}_{\geq 0} \tag{1.10}
\end{equation*}
$$

Then

$$
\begin{equation*}
a_{\mu}=\operatorname{det}(w) a_{w \mu} \quad \text { and } \quad a_{\mu}=0, \text { if } \mu_{i}=\mu_{j} \text { for some } i \neq j . \tag{1.11}
\end{equation*}
$$

Using that $\left\{x^{\lambda} \mid \lambda \in P\right\}$ is a basis of $\mathbb{Z}[P]$ it follows that

$$
\begin{equation*}
\left\{a_{\mu} \mid \mu \in P^{+}+\right\}=\left\{a_{\lambda+\rho} \mid \lambda \in P^{+}\right\} \quad \text { is a } \mathbb{Z} \text {-basis of } \mathbb{Z}[P]^{\epsilon} . \tag{1.12}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\mathbb{Z}[P]^{\epsilon}=\epsilon \cdot \mathbb{Z}[P] . \tag{1.13}
\end{equation*}
$$

The polynomial $x_{j}-x_{i}$ divides $a_{\lambda+\rho}$ since setting $x_{i}=x_{j}$ in the determinantal expression for $a_{\lambda+\rho}$ makes it equal to 0 , and thus

$$
a_{\lambda+\rho}=\operatorname{det}\left(\begin{array}{cccc}
x^{\lambda_{1}+n-1} & x_{\lambda_{2}+n-2}^{\lambda_{1}+2} & \cdots & x_{\lambda_{n}}^{\lambda_{n}} \tag{1.14}\\
x_{2}^{\lambda_{1}+n-1} & x_{2}^{\lambda_{2}+n-2} & \cdots & x_{2}^{\lambda_{n}} \\
& \vdots & & \cdots \\
x_{n}^{\lambda_{1}+n-1} & x_{n}^{\lambda_{2}+n-2} & \cdots & x_{n}^{\lambda_{n}}
\end{array}\right) \quad \text { is divisible by } \prod_{n \geq j>i \geq 1}\left(x_{j}-x_{i}\right) \text {. }
$$

since the polynomials $x_{j}-x_{i}, 1 \leq i<j \leq n$ are coprime in $\mathbb{Z}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$. When $\lambda=0$, comparing coefficients of the maximal terms in $a_{\lambda+\rho}$ and $\prod\left(x_{j}-x_{i}\right)$ shows that the Vandermonde determinant

$$
a_{\rho}=\operatorname{det}\left(\begin{array}{cccc}
x_{1}^{n-1} & x_{1}^{n-2} & \cdots & x_{1}^{0} \tag{1.15}\\
x_{2}^{n-1} & x_{2}^{n-2} & \cdots & x_{2}^{0} \\
\vdots & & \cdots & \vdots \\
x_{n}^{n-1} & x_{n}^{n-2} & \cdots & x_{n}^{0}
\end{array}\right)=\prod_{n \geq j>i \geq 1}\left(x_{j}-x_{i}\right)
$$

Since $\left\{a_{\lambda+\rho} \mid \lambda \in P^{+}\right\}$is a basis of A_{n}, and each $a_{\lambda+\rho}$ is divisible by a_{ρ}, the inverse of the map

$$
\begin{array}{clc}
\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]^{S_{n}} & \longrightarrow A_{n} \tag{1.16}\\
f & \longmapsto a_{\rho} f
\end{array}
$$

is well defined, and thus it is an isomorphism of $\mathbb{Z}[P]^{S_{n}}$-modules.
The Schur functions are

$$
s_{\lambda}=\frac{a_{\lambda+\rho}}{a_{\rho}}, \quad \text { for } \lambda \in P
$$

Since $\left\{a_{\lambda+\rho} \mid \lambda \in P^{+}\right\}$is a basis of A_{n} and the map in (???) is an isomorphism,

$$
\left\{s_{\lambda} \mid \lambda \in P^{+}\right\} \quad \text { is a basis of } \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]^{S_{n}}
$$

The dot action of S_{n} on \mathbb{Z}^{n} is given by

$$
\begin{equation*}
w \circ \mu=w(\mu+\rho)-\rho, \quad \text { for } w \in S_{n}, \mu \in \mathbb{Z}^{n} \tag{1.17}
\end{equation*}
$$

The first relation in ??? and the definition of s_{μ} imply that

$$
\begin{equation*}
s_{w \circ \mu}=\operatorname{det}(w) s_{\mu}, \quad \text { for } \mu \in P, w \in S_{n} \tag{1.18}
\end{equation*}
$$

2. The general case

A lattice is a free \mathbb{Z}-module. Let P be a lattice with a (\mathbb{Z}-linear) action of a finite group W so that P is a module for the group algebra $\mathbb{Z} W$. Extending coefficients, define

$$
\mathfrak{h}_{\mathbb{R}}^{*}=\mathbb{R} \otimes_{\mathbb{Z}} P \quad \text { and } \quad \mathfrak{h}^{*}=\mathbb{C} \otimes_{\mathbb{R}} \mathfrak{h}_{\mathbb{R}}^{*}
$$

so that $\mathfrak{h}_{\mathbb{R}}^{*}$ and \mathfrak{h}^{*} are vector spaces which are modules for the group algebras $\mathbb{R} W$ and $\mathbb{C} W$, respectively.

Assume that the action of W on $\mathfrak{h}_{\mathbb{R}}^{*}$ has fundamental regions???, and fix a fundamental region C in $\mathfrak{h}_{\mathbb{R}}^{*}$. Define

$$
P^{+}=P \cap \bar{C} \quad \text { and } \quad P^{++}=P \cap C
$$

so that P^{+}is a set of representatives of the orbits of the action of W on P. Assume???? that P^{+} is a cone in P (a module for the monoid $\mathbb{Z}_{\geq 0}$). A set of fundamental weights is a set of $\omega_{1}, \ldots, \omega_{n}$ generators of (the $\mathbb{Z}_{\geq 0}$-module) P^{+}which also form a \mathbb{Z}-basis of P. There is a bijection

$$
\begin{array}{rll}
P^{+} & \longrightarrow & P^{++} \tag{2.1}\\
\lambda & \longmapsto & \rho+\lambda
\end{array} \quad \text { where } \quad \rho=\omega_{1}+\ldots+\omega_{n}
$$

Let $\langle\rangle:, \mathfrak{h}_{\mathbb{R}}^{*} \times \mathfrak{h}_{\mathbb{R}}^{*} \rightarrow \mathbb{R}$ be a W-invariant symmetric bilinear form on $\mathfrak{h}_{\mathbb{R}}^{*}$ (such that the restriction to P is a perfect pairing??? with values in \mathbb{Z} ???). The simple coroots are $\alpha_{1}^{\vee}, \ldots, \alpha_{n}^{\vee}$ the dual basis to the fundamental weights,

$$
\begin{equation*}
\left\langle\omega_{i}, \alpha_{j}^{\vee}\right\rangle=\delta_{i j} \tag{2.2}
\end{equation*}
$$

Define

$$
\begin{equation*}
\overline{C^{\vee}}=\sum_{i=1}^{n} \mathbb{R}_{\leq 0} \alpha_{i}^{\vee} \quad \text { and } \quad C^{\vee}=\sum_{i=1}^{n} \mathbb{R}_{<0} \alpha_{i}^{\vee} \tag{2.3}
\end{equation*}
$$

The dominance order is the partial order on $\mathfrak{h}_{\mathbb{R}}^{*}$ given by

$$
\begin{equation*}
\lambda \geq \mu \quad \text { if } \quad \mu \in \lambda+\overline{C^{\vee}} . \tag{2.4}
\end{equation*}
$$

The group algebra of the abelian group P is

$$
\begin{equation*}
\mathbb{Z}[P]=\mathbb{Z}-\operatorname{span}\left\{x^{\lambda} \mid \lambda \in P\right\} \quad \text { with } \quad x^{\lambda} x^{\mu}=x^{\lambda+\mu}, \quad \text { for } \lambda, \mu \in P \tag{2.5}
\end{equation*}
$$

The action of W on P induces an action of W on $\mathbb{Z}[P]$ given by

$$
\begin{equation*}
w x^{\lambda}=x^{w \lambda}, \quad \text { for } w \in W, \lambda \in P . \tag{2.6}
\end{equation*}
$$

The ring of symmetric functions is

$$
\begin{equation*}
\mathbb{Z}[P]^{W}=\{f \in \mathbb{Z}[P] \mid w f=f \text { for all } w \in W\} \tag{2.7}
\end{equation*}
$$

Define the orbit sums, or monomial symmetric functions, by

$$
m_{\lambda}=\sum_{\gamma \in W \lambda} x^{\gamma}, \quad \text { for } \lambda \in P^{+}
$$

where $W \lambda$ is the orbit of λ under the action of W. Then

$$
\begin{equation*}
\left\{m_{\lambda} \mid \lambda \in P^{+}\right\} \quad \text { is a } \mathbb{Z} \text {-basis of } \mathbb{Z}[P]^{W} . \tag{2.8}
\end{equation*}
$$

Theorem 2.9. $\mathbb{Z}[P]$ is a free $\mathbb{Z}[P]^{W}$ of rank $|W|$.
Proof. ??????
The set of skew polynomials is

$$
\mathbb{Z}[P]^{\epsilon}=\{g \in \mathbb{Z}[P] \mid w g=\operatorname{det}(w) g \text { for all } w \in W\}
$$

If $f \in \mathbb{Z}\left[X_{n}\right]_{n}^{S}$ and $g \in \mathbb{Z}[P]^{\epsilon}$ then $f g \in \mathbb{Z}[P]^{\epsilon}$ and so A_{n} is a $\mathbb{Z}[P]^{W}$-module. Let ϵ be the element of the group algebra of W given by

$$
\begin{equation*}
\epsilon=\sum_{w \in W} \operatorname{det}(w) w \tag{2.10}
\end{equation*}
$$

and define

$$
\begin{equation*}
a_{\mu}=\epsilon\left(x^{\mu}\right)=\sum_{w \in W} \operatorname{det}(w) w x^{\mu}, \quad \text { for } \mu \in P \tag{2.11}
\end{equation*}
$$

Then

$$
\begin{equation*}
a_{\mu}=\operatorname{det}(w) a_{w \mu} \quad \text { and } \quad a_{\mu}=0, \text { if }\left\langle\mu, \alpha^{\vee}\right\rangle=0 \text { for some } \alpha \in R^{+} \tag{2.12}
\end{equation*}
$$

Using that $\left\{x^{\lambda} \mid \lambda \in P\right\}$ is a basis of $\mathbb{Z}[P]$ it follows that

$$
\begin{equation*}
\left\{a_{\mu} \mid \mu \in P^{++}\right\}=\left\{a_{\lambda+\rho} \mid \lambda \in P^{+}\right\} \quad \text { is a } \mathbb{Z} \text {-basis of } \mathbb{Z}[P]^{\epsilon} \tag{2.13}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\mathbb{Z}[P]^{\epsilon}=\epsilon \cdot \mathbb{Z}[P] \tag{2.14}
\end{equation*}
$$

Let $f \in \mathbb{Z}[P]^{\epsilon}$ and let $\alpha \in R^{+}$. If f_{γ} is the coefficient of x^{γ} in f then

$$
\sum_{\gamma \in P} f_{\gamma} x^{\gamma}=f=-s_{\alpha} f=\sum_{\gamma \in P}-f_{\gamma} x^{s_{\alpha} \gamma}, \quad \text { and so } \quad f=\sum_{\substack{\gamma \in P \\\langle\gamma, \alpha \vee\rangle \geq 0}} f_{\gamma}\left(x^{\gamma}-x^{s_{\alpha} \gamma}\right)
$$

since $f_{s_{\alpha} \gamma}=-f_{\gamma}$. Since each term $x^{\gamma}-x^{s_{\alpha} \gamma}$ is divisible $1-x^{-\alpha}, f$ is divisible by $1-x^{-\alpha}$, and thus

$$
\begin{equation*}
\text { each } f \in \mathbb{Z}[P]^{\epsilon} \quad \text { is divisible by } \quad x^{\rho} \prod_{\alpha \in R^{+}}\left(1-x^{-\alpha}\right)=\prod_{\alpha \in R^{+}}\left(x^{\alpha / 2}-x^{-\alpha / 2}\right) \tag{2.15}
\end{equation*}
$$

since the polynomials $1-x^{-\alpha}, \alpha \in R^{+}$are coprime in $\mathbb{Z}[P]$ (and x^{ρ} is a unit in $\mathbb{Z}[P]$). Comparing coefficients of the maximal terms in a_{ρ} and $x^{\rho} \prod_{\alpha \in R^{+}}\left(1-x^{-\alpha}\right)$ shows that the Weyl denominator,

$$
\begin{equation*}
a_{\rho}=\prod_{\alpha \in R^{+}}\left(x^{\alpha / 2}-x^{-\alpha / 2}\right)=x^{\rho} \prod_{\alpha \in R^{+}}\left(1-x^{-\alpha}\right) \tag{2.16}
\end{equation*}
$$

Since each $f \in \mathbb{Z}[P]^{\epsilon}$ is divisible by a_{ρ} the inverse of the map

$$
\begin{array}{clc}
\mathbb{Z}[P]^{W} & \longrightarrow & \mathbb{Z}[P]^{\epsilon} \tag{2.17}\\
f & \longmapsto & a_{\rho} f
\end{array}
$$

is well defined and, thus, is an isomorphism of $\mathbb{Z}[P]^{W}$-modules.
The Schur functions or Weyl characters are

$$
\begin{equation*}
s_{\lambda}=\frac{a_{\lambda+\rho}}{a_{\rho}}, \quad \text { for } \lambda \in P \tag{2.18}
\end{equation*}
$$

Since $\left\{a_{\lambda+\rho} \mid \lambda \in P^{+}\right\}$is a basis of $\mathbb{Z}[P]^{\epsilon}$ and the map in (???) is an isomorphism,

$$
\begin{equation*}
\left\{s_{\lambda} \mid \lambda \in P^{+}\right\} \quad \text { is a basis of } \mathbb{Z}[P]^{W} \tag{2.19}
\end{equation*}
$$

The dot action of S_{n} on P is given by

$$
\begin{equation*}
w \circ \mu=w(\mu+\rho)-\rho, \quad \text { for } w \in S_{n}, \mu \in P \tag{2.20}
\end{equation*}
$$

The first relation in ??? and the definition of s_{μ} imply that

$$
\begin{equation*}
s_{w \circ \mu}=\operatorname{det}(w) s_{\mu}, \quad \text { for } \mu \in P, w \in W \tag{2.21}
\end{equation*}
$$

Lemma 2.22. Let $f \in \mathbb{Z}[P]^{W}$ and write $f=\sum_{\gamma} f_{\gamma} x^{\gamma}$ so that f_{γ} is the coefficient of x^{γ} in f. Then

$$
f=\sum_{\mu \in P^{+}} f_{\mu} m_{\mu}=\sum_{\lambda \in P^{+}} \eta^{\lambda} s_{\lambda}, \quad \text { where } \quad \eta^{\lambda}=\sum_{w \in W} \operatorname{det}(w) f_{\lambda+\rho-w \rho}
$$

Proof. The first equality is immediate from the definition of m_{μ}. Since $f \in \mathbb{Z}[P]^{W}, f \epsilon\left(x^{\rho}\right)=\epsilon\left(f x^{\rho}\right)$ and $f_{\mu}=f_{w^{-1} \mu}$, and so

$$
\begin{aligned}
f & =\frac{1}{a_{\rho}} f a_{\rho}=\frac{1}{a_{\rho}} f \epsilon\left(x^{\rho}\right)=\frac{1}{a_{\rho}} \epsilon\left(f x^{\rho}\right)=\sum_{\gamma \in P} f_{\gamma} \frac{\epsilon\left(x^{\gamma+\rho}\right)}{a_{\rho}} \\
& =\sum_{\gamma \in P} f_{\gamma} s_{\gamma}=\sum_{\lambda \in P^{+}} \sum_{w \in W} f_{w \circ \lambda} s_{w \circ \lambda}=\sum_{\lambda \in P^{+}} s_{\lambda} \sum_{w \in W} \operatorname{det}(w) f_{w \circ \lambda} \\
& =\sum_{\lambda \in P^{+}} s_{\lambda} \sum_{w \in W} \operatorname{det}(w) f_{w^{-1}(w \circ \lambda)}=\sum_{\lambda \in P^{+}} s_{\lambda} \sum_{w \in W} \operatorname{det}(w)^{-1} f_{\lambda+\rho-w \rho}
\end{aligned}
$$

which establishes the second equality.
Define positive integers $p(\gamma)$ by

$$
\begin{equation*}
\prod_{\alpha \in R^{+}} \frac{1}{1-x^{-\alpha}}=\sum_{\gamma \in Q^{+}} p(\gamma) x^{-\gamma} \tag{2.23}
\end{equation*}
$$

Corollary 2.24. Let $K_{\lambda \mu}$ be the integers defined by

$$
\begin{equation*}
s_{\lambda}=\sum_{\mu \in P^{+}} K_{\lambda \mu} m_{\mu}, \quad \text { for } \lambda \in P^{+} \tag{2.25}
\end{equation*}
$$

Then $\quad K_{\lambda \lambda}=1 \quad$ and $\quad K_{\lambda \mu}=0$ unless $\mu \leq \lambda$, and

$$
K_{\lambda \mu}=\sum_{w \in W} \operatorname{det}(w) p(w(\lambda+\rho)-(\mu+r h o))
$$

Proof. If $w \neq 1$ then $w(\lambda+\rho)<\lambda+\rho$ so that $w(\lambda+\rho)-\rho<\lambda$ and

$$
s_{\lambda}=\left(\sum_{w \in W} \operatorname{det}(w) e^{w(\lambda+\rho)-\rho}\right) \cdot \frac{1}{1-x^{-\alpha}}=x^{\lambda}+((\text { lower terms in dominance order })
$$

Thus $K_{\lambda \lambda}=1$ and $K_{\lambda \mu}=0$ unless $\mu \leq \lambda$. The coefficient of x^{μ} in

$$
s_{\lambda}=\left(\sum_{w \in W} \operatorname{det}(w) x^{w(\lambda+\rho)-\rho}\right) \prod_{\alpha \in R^{+}} \frac{1}{1-x^{-\alpha}}=\sum_{\substack{w \in W \\ \gamma \in Q^{+}}} \operatorname{det}(w) p(\gamma) x^{w(\lambda+\rho)-\gamma-\rho}
$$

has a contribution only when $w(\lambda+\rho)-\gamma-\rho=\mu$ so that $\gamma=w(\lambda+\rho)-(\mu+\rho)$. Thus

$$
K_{\lambda \mu}=\sum_{w \in W} \operatorname{det}(w) p(w(\lambda+\rho)-(\mu+r h o))
$$

Define integers $c_{\mu \nu}^{\lambda}$ by

$$
s_{\mu} s_{\nu}=\sum_{\lambda \in P^{+}} c_{\mu \nu}^{\lambda} s_{\lambda}, \quad \text { for } \mu, \nu \in P^{+}
$$

Then $c_{\mu \nu}^{\lambda}$ is the coefficient of s_{λ} in ????????

3. Other examples

Example. The $S p_{2 n}(\mathbb{C})$ case.
Let $W=W C_{n}$ be the group of $n \times n$ matrices with
(a) exactly one nonzero entry in each row and each column,
(b) the nonzero entries are ± 1.

Then $W=W C_{n}=O_{n}(\mathbb{Z})$, the group of orthogonal matrices with entries in \mathbb{Z}. Let $\varepsilon_{1}, \ldots, \varepsilon_{n}$ be the \mathbb{Z}-basis of $\mathbb{Z}^{n}=\left\{\left(\lambda_{1}, \ldots, \lambda_{n}\right) \mid \lambda_{i} \in \mathbb{Z}\right\}$ given by $\varepsilon_{i}=(0, \ldots, 0,1,0, \ldots, 0)$, with the 1 in the i th entry, so that

$$
\begin{align*}
P & =\mathbb{Z}^{n} & =\mathbb{Z}-\operatorname{span}\left\{\varepsilon_{1}, \ldots, \varepsilon_{n}\right\} \\
\text { and let } \quad P^{+} & =\{\lambda & \left.=\lambda_{1} \varepsilon_{1}+\cdots+\lambda_{n} \varepsilon_{n} \in \mathbb{Z}^{n} \mid \lambda_{1} \geq \cdots \geq \lambda_{n} \geq 0\right\}, \tag{3.1}\\
\text { and } \quad P^{++} & =\{\lambda & \left.=\lambda_{1} \varepsilon_{1}+\cdots+\lambda_{n} \varepsilon_{n} \in \mathbb{Z}^{n} \mid \lambda_{1}>\cdots>\lambda_{n}>0\right\} .
\end{align*}
$$

Then P^{+}is a set of representatives of the orbits of the action of the natural action of W on P. There is a bijection

$$
\begin{array}{rll}
P^{+} & \longrightarrow & P^{++} \tag{3.2}\\
\lambda & \longmapsto & \rho+\lambda
\end{array} \quad \text { where } \quad \rho=n \varepsilon_{1}+(n-1) \varepsilon_{2}+\cdots+2 \varepsilon_{n-1}+\varepsilon_{n}
$$

Let

$$
\begin{equation*}
\mathbb{Z}[P]=\mathbb{Z}-\operatorname{span}\left\{x^{\lambda} \mid \lambda \in P\right\} \quad \text { with } \quad x^{\lambda} x^{\mu}=x^{\lambda+\mu}, \quad \text { for } \lambda, \mu \in P \tag{3.3}
\end{equation*}
$$

For $1 \leq i \leq n$ write

$$
x_{i}=x^{\varepsilon_{i}} \quad \text { so that } \quad x^{\lambda}=x_{1}^{\lambda_{1}} \cdots x_{n}^{\lambda_{n}} \quad \text { for } \lambda=\lambda_{1} \varepsilon_{1}+\cdots+\lambda_{n} \varepsilon_{n}
$$

and $\mathbb{Z}[P]=\mathbb{Z}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$.
Example. The $\operatorname{Spin}_{2 n+1}(\mathbb{C})$ case.
Let $W=W B_{n}=W C_{n}$, where $W C_{n}=O_{n}(\mathbb{Z})$. Let

$$
\begin{aligned}
\omega_{1} & =\frac{1}{2}\left(\varepsilon_{1}+\varepsilon_{2}+\cdots+\varepsilon_{n}\right) \\
\omega_{i} & =\varepsilon_{i}+\varepsilon_{i+1}+\cdots+\varepsilon_{n}, \quad \text { for } 2 \leq i \leq n
\end{aligned}
$$

so that

$$
\begin{align*}
P & =\left\{\lambda=\lambda_{1} \varepsilon_{1}+\cdots+\lambda_{n} \varepsilon_{n} \mid \text { all } \lambda_{i} \in \mathbb{Z} \text { or all } \lambda_{i} \in \frac{1}{2}+\mathbb{Z}\right\} \\
P^{+} & =\left\{\lambda=\lambda_{1} \varepsilon_{1}+\cdots+\lambda_{n} \varepsilon_{n} \in P \mid 0 \leq \lambda_{1} \leq \cdots \leq \lambda_{n}\right\} \tag{3.4}\\
P^{++} & =\left\{\lambda=\lambda_{1} \varepsilon_{1}+\cdots+\lambda_{n} \varepsilon_{n} \in P \mid 0<\lambda_{1}<\cdots<\lambda_{n}\right\} \\
\rho & =\varepsilon_{1}+2 \varepsilon_{2}+\cdots+n \varepsilon_{n}-\frac{1}{2}\left(\varepsilon_{1}+\cdots+\varepsilon_{n}\right)
\end{align*}
$$

Example. The $\operatorname{Spin}_{2 n}(\mathbb{C})$ case.
Let $W=W D_{n}$ be the group of $n \times n$ matrices with
(a) exactly one nonzero entry in each row and each column,
(b) the nonzero entries are ± 1, and
(c) there are an even number of -1 entries.

Then $W D_{n}$ is a normal subgroup of index 2 in $W C_{n}=O_{n}(\mathbb{Z})$. Let

$$
\begin{aligned}
\omega_{1} & =\frac{1}{2}\left(-\epsilon_{1}+\epsilon_{2}+\ldots+\epsilon_{n}\right), \\
\omega_{2} & =\frac{1}{2}\left(\epsilon_{1}+\epsilon_{2}+\ldots+\epsilon_{n}\right), \\
\omega_{i} & =\epsilon_{i}+\epsilon_{i+1}+\ldots+\epsilon_{n}, \quad \text { for } i>2,
\end{aligned}
$$

so that

$$
\begin{align*}
P & =\left\{\lambda=\lambda_{1} \varepsilon_{1}+\cdots+\lambda_{n} \varepsilon_{n} \left\lvert\, \lambda_{1} \in \frac{1}{2} \mathbb{Z}\right. \text { and, for } i>1, \text { all } \lambda_{i} \in \mathbb{Z} \text { or all } \lambda_{i} \in \frac{1}{2}+\mathbb{Z}\right\}, \\
P^{+} & =\left\{\lambda=\lambda_{1} \varepsilon_{1}+\cdots+\lambda_{n} \varepsilon_{n} \in P| | \lambda_{1} \mid \leq \lambda_{2} \leq \cdots \leq \lambda_{n}\right\}, \\
P^{++} & =\left\{\lambda=\lambda_{1} \varepsilon_{1}+\cdots+\lambda_{n} \varepsilon_{n} \in P| | \lambda_{1} \mid<\cdots<\lambda_{n}\right\}, \tag{3.5}\\
\rho & =\varepsilon_{1}+2 \varepsilon_{2}+\cdots+n \varepsilon_{n}-\left(\varepsilon_{1}+\cdots+\varepsilon_{n}\right) .
\end{align*}
$$

Example. The $S L_{n}(\mathbb{C})$-case
Let $\varepsilon_{1}, \ldots, \varepsilon_{n}$ be the \mathbb{R}-basis of $\mathbb{R}^{n}=\left\{\left(\lambda_{1}, \ldots, \lambda_{n}\right) \mid \lambda_{i} \in \mathbb{R}\right\}$ given by $\varepsilon_{i}=(0, \ldots, 0,1,0, \ldots, 0)$, with the 1 in the i th entry. The symmetric group S_{n} acts on \mathbb{R}^{n} by permuting the coordinates and, by restriction, S_{n} acts on

$$
\mathfrak{h}_{\mathbb{R}}^{*}=\left\{\gamma=\gamma_{1} \varepsilon_{1}+\cdots+\gamma_{n} \varepsilon_{n} \mid \gamma_{i} \in \mathbb{R}, \gamma_{1}+\cdots+\gamma_{n}=0\right\} .
$$

Let

$$
\omega_{n}=\varepsilon_{1}+\cdots+\varepsilon_{n} .
$$

Then S_{n} acts also on the \mathbb{Z}-submodule of $\mathfrak{h}_{\mathbb{R}}^{*}$ given by

$$
P=\left\{\left.\lambda=\lambda_{1} \varepsilon_{1}+\cdots+\lambda_{n} \varepsilon_{n}-\frac{|\lambda|}{n} \omega_{n} \right\rvert\, \lambda_{i} \in \mathbb{Z}_{\geq 0}\right\}
$$

which has \mathbb{Z}-basis $\left\{\omega_{1}, \ldots, \omega_{n-1}\right\}$ where

$$
\begin{equation*}
\omega_{i}=\varepsilon_{1}+\cdots+\omega_{i}-\frac{1}{n}\left(\omega_{n}\right), \quad \text { for } 1 \leq i \leq n-1 . \tag{3.6}
\end{equation*}
$$

Then

$$
\begin{align*}
P^{+} & =\left\{\lambda \in P \mid \lambda_{1} \geq \cdots \geq \lambda_{n}\right\}, \\
P^{++} & =\left\{\lambda \in P \mid \lambda_{1}>\cdots>\lambda_{n}\right\}, \tag{3.7}\\
\rho & =(n-1) \varepsilon_{1}+(n-2) \varepsilon_{2}+\cdots+\varepsilon_{n-1}-\left(\frac{n-1}{2}\right) \omega_{n} .
\end{align*}
$$

Let

$$
\begin{equation*}
\mathbb{Z}[P]=\mathbb{Z} \text {-span }\left\{X^{\lambda} \mid \lambda \in P\right\} \quad \text { with } \quad X^{\lambda} X^{\mu}=X^{\lambda+\mu}, \quad \text { for } \lambda, \mu \in P . \tag{3.8}
\end{equation*}
$$

For $1 \leq i \leq n$ write

$$
x_{i}=X^{\varepsilon_{i}-\frac{1}{n} \omega_{n}} \quad \text { so that } \quad X^{\lambda}=x_{1}^{\lambda_{1}} \cdots x_{n}^{\lambda_{n}} \quad \text { for } \lambda=\lambda_{1} \varepsilon_{1}+\cdots+\lambda_{n} \varepsilon_{n}-\frac{|\lambda|}{n} \omega_{n} \in P
$$

Then $\mathbb{Z}[P]$ is the quotient of the Laurent polynomial ring $\mathbb{Z}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$ by the ideal generated by the element $x_{1} \cdots x_{n}-1$,

$$
\mathbb{Z}[P]=\frac{\mathbb{Z}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]}{\left\langle x_{1} \cdots x_{n}-1\right\rangle}
$$

The action of S_{n} on P induces an action of S_{n} on $\mathbb{Z}[P]$ given by

$$
\begin{equation*}
w x_{i}=x_{w(i)}, \quad \text { for } w \in S_{n} \text { and } 1 \leq i \leq n \tag{3.9}
\end{equation*}
$$

and the ring of symmetric functions is

$$
\begin{equation*}
\mathbb{Z}[P]^{S_{n}}=\left\{f \in \mathbb{Z}[P] \mid w f=f \text { for all } w \in S_{n}\right\} \tag{3.10}
\end{equation*}
$$

Example: Type A_{2}.

Example: Type B_{2}.

Example: Type C_{2},
Example: Type G_{2}.

Notes and References

[Mac] I.G. Macdonald, Symmetric functions and Hall polynomials, Second edition, Oxford University Press, 1995.

[^0]: * Research supported in part by National Science Foundation grant DMS-??????.

